コード例 #1
0
        //tinh mse cho moi ca the
        //private double CalculateMSE(Individual_NSGA individual, double[][] inputData)
        //{
        //    // Chỗ này chính là chỗ cần dùng với RBF đây
        //    RadialNetwork rn = new RadialNetwork(m_RadialNetwork);
        //    double fitness = 0.0;
        //    rn.SetWeights(individual.values);
        //    fitness = rn.Accuracy(inputData);
        //    return fitness;
        //}

        //tinh mse cho moi ca the
        private double CalculateMSE(Individual_NSGA individual, double[][] inputData)
        {
            // Chỗ này chính là chỗ cần dùng với RBF đây
            RadialNetwork rn      = new RadialNetwork(m_RadialNetwork);
            double        fitness = 0.0;

            rn.SetWeights(individual.values);
            fitness = rn.getMSEOf(inputData);
            return(fitness);
        }
コード例 #2
0
ファイル: GAs.cs プロジェクト: lulzzz/RBF_TIMESERIES_
        private double CalculateFitnessOf(Individual_GA individual, double[][] inputData)
        {
            // Chỗ này chính là chỗ cần dùng với RBF đây
            RadialNetwork rn      = new RadialNetwork(m_RadialNetwork);
            double        fitness = 0.0;

            rn.SetWeights(individual.values);
            fitness            = rn.Accuracy(inputData);
            individual.Fitness = fitness;
            return(fitness);
        }
コード例 #3
0
 public NSGAII(int m_Population_size, int m_IndividualLength, RadialNetwork RadialNetwork, double m_MaxEvaluations, double[][] inputData, int numberOfObjectives)
 {
     this.m_Population_size  = m_Population_size;
     this.m_IndividualLength = m_IndividualLength;
     this.m_Random           = new Random();
     this.Population         = new Population_NSGA(m_Population_size);
     this.m_RadialNetwork    = RadialNetwork;
     this.m_MaxEvaluations   = m_MaxEvaluations;
     this.inputData          = inputData;
     mutationProb            = 1.0 / m_IndividualLength;
     this.Population.Population_init(m_IndividualLength, numberOfObjectives);
 }
コード例 #4
0
        } // ctor

        public RadialNetwork(RadialNetwork newOne)
        {
            rnd            = new Random(0);
            this.numInput  = newOne.NumInput;
            this.numHidden = newOne.NumHidden;
            this.numOutput = newOne.NumOutput;
            this.inputs    = newOne.Inputs;
            this.centroids = newOne.Centroids;
            this.widths    = newOne.Widths;
            this.hoWeights = newOne.HoWeights;
            this.oBiases   = newOne.OBiases;
            this.outputs   = newOne.Outputs;
        } // ctor
コード例 #5
0
        private void btnStart_Click(object sender, EventArgs e)
        {
            //Get input from Form
            //Get testing rate
            if (!StringIsNull(txtTestingRate.Text))
            {
                testingRate = double.Parse(txtTestingRate.Text);
            }

            //Get window size
            if (!StringIsNull(txtWindowSize.Text))
            {
                windowSize = int.Parse(txtWindowSize.Text);
            }

            //Step1: Get inputTrain, idealTrain, inputTest, idealTest
            //GetTrainTest(data, out train, out test, testingRate);
            //GetInputIdeal(train, out inputTrain, out idealTrain, windowSize);
            //GetInputIdeal(train, out inputTest, out idealTest, windowSize);
            GetAllData(data, out allData, windowSize);
            double[][] trainData = null;
            double[][] testData  = null;
            int        seed      = 8; // gives a good demo

            GetTrainTest(allData, seed, out trainData, out testData, testingRate);

            Console.WriteLine("\nCreating a 4-5-3 radial basis function network");
            int           numInput  = windowSize;
            int           numHidden = 2 * numInput;
            int           numOutput = 1;
            RadialNetwork rn        = new RadialNetwork(numInput, numHidden, numOutput);

            Console.WriteLine("\nBeginning RBF training\n");
            int maxIterations  = 50;   // max for GA
            int maxEvaluations = 1000; // max for NSGAII
            //double[] bestWeights = rn.TrainWithPSO(trainData, maxIterations);
            //double[] bestWeights = rn.TrainWithGA(trainData, maxIterations);
            Population_NSGA bestPopulation = rn.TrainWithNSGAII(trainData, maxEvaluations);

            Console.WriteLine("\nEvaluating result RBF classification accuracy on the test data");
            //rn.SetWeights(bestWeights);

            double acc = rn.Accuracy(testData);

            //Set Textbox
            SetText(txtTestErr, acc.ToString("F5"));

            Console.WriteLine("Complete Program!");
        }
コード例 #6
0
ファイル: GAs.cs プロジェクト: lulzzz/RBF_TIMESERIES_
        public GAs(int m_Population_size, int m_IndividualLength, RadialNetwork RadialNetwork, double m_MaxIterations, double[][] inputData)
        {
            this.m_Population_size  = m_Population_size;
            this.m_IndividualLength = m_IndividualLength;
            this.m_Random           = new Random();
            this.Population         = new Population_GA(m_Population_size);
            this.m_RadialNetwork    = RadialNetwork;
            this.m_MaxIterations    = m_MaxIterations;

            this.Population.Population_init(m_IndividualLength);
            // set fitness
            for (int i = 0; i < m_Population_size; i++)
            {
                CalculateFitnessOf(Population.Individuals[i], inputData);
            }
        }