public HaltonRsg(int dimensionality, ulong seed = 0, bool randomStart = true, bool randomShift = false) { dimensionality_ = dimensionality; sequenceCounter_ = 0; sequence_ = new Sample <List <double> >(new InitializedList <double>(dimensionality), 1.0); randomStart_ = new InitializedList <ulong>(dimensionality, 0UL); randomShift_ = new InitializedList <double>(dimensionality, 0.0); if (!(dimensionality > 0)) { throw new ArgumentException("dimensionality must be greater than 0"); } if (randomStart || randomShift) { RandomSequenceGenerator <MersenneTwisterUniformRng> uniformRsg = new RandomSequenceGenerator <MersenneTwisterUniformRng>(dimensionality_, seed); if (randomStart) { randomStart_ = uniformRsg.nextInt32Sequence(); } if (randomShift) { randomShift_ = uniformRsg.nextSequence().value; } } }
// factory public object make_sequence_generator(int dimension, ulong seed) { RandomSequenceGenerator <URNG> g = new RandomSequenceGenerator <URNG>(dimension, seed); return(icInstance != null ? new InverseCumulativeRsg <RandomSequenceGenerator <URNG>, IC>(g, icInstance) : new InverseCumulativeRsg <RandomSequenceGenerator <URNG>, IC>(g)); }
protected override PathPricer <IPath> pathPricer() { PlainVanillaPayoff payoff = arguments_.payoff as PlainVanillaPayoff; Utils.QL_REQUIRE(payoff != null, () => "non-plain payoff given"); TimeGrid grid = timeGrid(); List <double> discounts = new InitializedList <double>(grid.size()); for (int i = 0; i < grid.size(); i++) { discounts[i] = process_.riskFreeRate().currentLink().discount(grid[i]); } // do this with template parameters? if (isBiased_) { return(new BiasedBarrierPathPricer(arguments_.barrierType, arguments_.barrier, arguments_.rebate, payoff.optionType(), payoff.strike(), discounts)); } else { IRNG sequenceGen = new RandomSequenceGenerator <MersenneTwisterUniformRng>(grid.size() - 1, 5); return(new BarrierPathPricer(arguments_.barrierType, arguments_.barrier, arguments_.rebate, payoff.optionType(), payoff.strike(), discounts, process_, sequenceGen)); } }