//! minimize the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); int iterationNumber_ = 0; int stationaryStateIterationNumber_ = 0; lineSearch_.searchDirection = new Vector(x_.Count); bool end; // function and squared norm of gradient values; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gold at the size of the optimization problem search direction Vector gold = new Vector(lineSearch_.searchDirection.Count); Vector gdiff = new Vector(lineSearch_.searchDirection.Count); P.setFunctionValue(P.valueAndGradient(gold, x_)); lineSearch_.searchDirection = gold * -1.0; P.setGradientNormValue(Vector.DotProduct(gold, gold)); normdiff = Math.Sqrt(P.gradientNormValue()); do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); if (!(lineSearch_.succeed())) { throw new ApplicationException("line-search failed!"); } // End criteria // FIXME: it's never been used! ??? // , normdiff end = endCriteria.value(iterationNumber_, ref stationaryStateIterationNumber_, true, P.functionValue(), Math.Sqrt(P.gradientNormValue()), lineSearch_.lastFunctionValue(), Math.Sqrt(lineSearch_.lastGradientNorm2()), ref ecType); // Updates // New point x_ = lineSearch_.lastX(); // New function value P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors gdiff = gold - lineSearch_.lastGradient(); normdiff = Math.Sqrt(Vector.DotProduct(gdiff, gdiff)); gold = lineSearch_.lastGradient(); lineSearch_.searchDirection = gold * -1.0; // New gradient squared norm P.setGradientNormValue(lineSearch_.lastGradientNorm2()); // Increase interation number ++iterationNumber_; } while (end == false); P.setCurrentValue(x_); return(ecType); }
//! minimize the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); int iterationNumber_ = 0; int stationaryStateIterationNumber_ = 0; lineSearch_.searchDirection = new Vector(x_.Count); bool end; // function and squared norm of gradient values; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gold at the size of the optimization problem search direction Vector gold = new Vector(lineSearch_.searchDirection.Count); Vector gdiff = new Vector(lineSearch_.searchDirection.Count); P.setFunctionValue(P.valueAndGradient(gold, x_)); lineSearch_.searchDirection = gold*-1.0; P.setGradientNormValue(Vector.DotProduct(gold, gold)); normdiff = Math.Sqrt(P.gradientNormValue()); do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); if (!(lineSearch_.succeed())) throw new ApplicationException("line-search failed!"); // End criteria // FIXME: it's never been used! ??? // , normdiff end = endCriteria.value(iterationNumber_, ref stationaryStateIterationNumber_, true, P.functionValue(), Math.Sqrt(P.gradientNormValue()), lineSearch_.lastFunctionValue(), Math.Sqrt(lineSearch_.lastGradientNorm2()), ref ecType); // Updates // New point x_ = lineSearch_.lastX(); // New function value P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors gdiff = gold - lineSearch_.lastGradient(); normdiff = Math.Sqrt(Vector.DotProduct(gdiff, gdiff)); gold = lineSearch_.lastGradient(); lineSearch_.searchDirection = gold*-1.0; // New gradient squared norm P.setGradientNormValue(lineSearch_.lastGradientNorm2()); // Increase interation number ++iterationNumber_; } while (end == false); P.setCurrentValue(x_); return ecType; }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; upperBound_ = P.constraint().upperBound(P.currentValue()); lowerBound_ = P.constraint().lowerBound(P.currentValue()); currGenSizeWeights_ = new Vector(configuration().populationMembers, configuration().stepsizeWeight); currGenCrossover_ = new Vector(configuration().populationMembers, configuration().crossoverProbability); List <Candidate> population = new InitializedList <Candidate>(configuration().populationMembers); population.ForEach((ii, vv) => population[ii] = new Candidate(P.currentValue().size())); fillInitialPopulation(population, P); //original quantlib use partial_sort as only first elements is needed double fxOld = population.Min(x => x.cost); bestMemberEver_ = (Candidate)population.First(x => x.cost.IsEqual(fxOld)).Clone(); int iteration = 0, stationaryPointIteration = 0; // main loop - calculate consecutive emerging populations while (!endCriteria.checkMaxIterations(iteration++, ref ecType)) { calculateNextGeneration(population, P.costFunction()); double fxNew = population.Min(x => x.cost); Candidate tmp = (Candidate)population.First(x => x.cost.IsEqual(fxNew)).Clone(); if (fxNew < bestMemberEver_.cost) { bestMemberEver_ = tmp; } if (endCriteria.checkStationaryFunctionValue(fxOld, fxNew, ref stationaryPointIteration, ref ecType)) { break; } fxOld = fxNew; } P.setCurrentValue(bestMemberEver_.values); P.setFunctionValue(bestMemberEver_.cost); return(ecType); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // set up of the problem //double ftol = endCriteria.functionEpsilon(); // end criteria on f(x) (see Numerical Recipes in C++, p.410) double xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/) int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); int iterationNumber_ = 0; // Initialize vertices of the simplex bool end = false; int n = x_.Count; vertices_ = new InitializedList <Vector>(n + 1, x_); for (int i = 0; i < n; i++) { Vector direction = new Vector(n, 0.0); Vector vertice = vertices_[i + 1]; direction[i] = 1.0; P.constraint().update(ref vertice, direction, lambda_); vertices_[i + 1] = vertice; } // Initialize function values at the vertices of the simplex values_ = new Vector(n + 1, 0.0); for (int i = 0; i <= n; i++) { values_[i] = P.value(vertices_[i]); } // Loop looking for minimum do { sum_ = new Vector(n, 0.0); for (int i = 0; i <= n; i++) { sum_ += vertices_[i]; } // Determine the best (iLowest), worst (iHighest) // and 2nd worst (iNextHighest) vertices int iLowest = 0; int iHighest; int iNextHighest; if (values_[0] < values_[1]) { iHighest = 1; iNextHighest = 0; } else { iHighest = 0; iNextHighest = 1; } for (int i = 1; i <= n; i++) { if (values_[i] > values_[iHighest]) { iNextHighest = iHighest; iHighest = i; } else { if ((values_[i] > values_[iNextHighest]) && i != iHighest) { iNextHighest = i; } } if (values_[i] < values_[iLowest]) { iLowest = i; } } // Now compute accuracy, update iteration number and check end criteria //// Numerical Recipes exit strategy on fx (see NR in C++, p.410) //double low = values_[iLowest]; //double high = values_[iHighest]; //double rtol = 2.0*std::fabs(high - low)/ // (std::fabs(high) + std::fabs(low) + QL_EPSILON); //++iterationNumber_; //if (rtol < ftol || // endCriteria.checkMaxIterations(iterationNumber_, ecType)) { // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl double simplexSize = Utils.computeSimplexSize(vertices_); ++iterationNumber_; if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryPoint(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); x_ = vertices_[iLowest]; double low = values_[iLowest]; P.setFunctionValue(low); P.setCurrentValue(x_); return(ecType); } // If end criteria is not met, continue double factor = -1.0; double vTry = extrapolate(ref P, iHighest, ref factor); if ((vTry <= values_[iLowest]) && (factor == -1.0)) { factor = 2.0; extrapolate(ref P, iHighest, ref factor); } else if (Math.Abs(factor) > Const.QL_EPSILON) { if (vTry >= values_[iNextHighest]) { double vSave = values_[iHighest]; factor = 0.5; vTry = extrapolate(ref P, iHighest, ref factor); if (vTry >= vSave && Math.Abs(factor) > Const.QL_EPSILON) { for (int i = 0; i <= n; i++) { if (i != iLowest) { #if QL_ARRAY_EXPRESSIONS vertices_[i] = 0.5 * (vertices_[i] + vertices_[iLowest]); #else vertices_[i] += vertices_[iLowest]; vertices_[i] *= 0.5; #endif values_[i] = P.value(vertices_[i]); } } } } } // If can't extrapolate given the constraints, exit if (Math.Abs(factor) <= Const.QL_EPSILON) { x_ = vertices_[iLowest]; double low = values_[iLowest]; P.setFunctionValue(low); P.setCurrentValue(x_); return(EndCriteria.Type.StationaryFunctionValue); } } while (end == false); throw new Exception("optimization failed: unexpected behaviour"); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // set up of the problem //double ftol = endCriteria.functionEpsilon(); // end criteria on f(x) (see Numerical Recipes in C++, p.410) double xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/) int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); int iterationNumber_ = 0; // Initialize vertices of the simplex bool end = false; int n = x_.Count; vertices_ = new InitializedList<Vector>(n + 1, x_); for (int i = 0; i < n; i++) { Vector direction = new Vector(n, 0.0); direction[i] = 1.0; P.constraint().update(vertices_[i + 1], direction, lambda_); } // Initialize function values at the vertices of the simplex values_ = new Vector(n + 1, 0.0); for (int i = 0; i <= n; i++) values_[i] = P.value(vertices_[i]); // Loop looking for minimum do { sum_ = new Vector(n, 0.0); for (int i = 0; i <= n; i++) sum_ += vertices_[i]; // Determine the best (iLowest), worst (iHighest) // and 2nd worst (iNextHighest) vertices int iLowest = 0; int iHighest; int iNextHighest; if (values_[0] < values_[1]) { iHighest = 1; iNextHighest = 0; } else { iHighest = 0; iNextHighest = 1; } for (int i = 1; i <= n; i++) { if (values_[i] > values_[iHighest]) { iNextHighest = iHighest; iHighest = i; } else { if ((values_[i] > values_[iNextHighest]) && i != iHighest) iNextHighest = i; } if (values_[i] < values_[iLowest]) iLowest = i; } // Now compute accuracy, update iteration number and check end criteria //// Numerical Recipes exit strategy on fx (see NR in C++, p.410) //double low = values_[iLowest]; //double high = values_[iHighest]; //double rtol = 2.0*std::fabs(high - low)/ // (std::fabs(high) + std::fabs(low) + QL_EPSILON); //++iterationNumber_; //if (rtol < ftol || // endCriteria.checkMaxIterations(iterationNumber_, ecType)) { // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl double simplexSize = Utils.computeSimplexSize(vertices_); ++iterationNumber_; if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryPoint(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); x_ = vertices_[iLowest]; double low = values_[iLowest]; P.setFunctionValue(low); P.setCurrentValue(x_); return ecType; } // If end criteria is not met, continue double factor = -1.0; double vTry = extrapolate(ref P, iHighest, ref factor); if ((vTry <= values_[iLowest]) && (factor == -1.0)) { factor = 2.0; extrapolate(ref P, iHighest, ref factor); } else if (Math.Abs(factor) > Const.QL_Epsilon) { if (vTry >= values_[iNextHighest]) { double vSave = values_[iHighest]; factor = 0.5; vTry = extrapolate(ref P, iHighest, ref factor); if (vTry >= vSave && Math.Abs(factor) > Const.QL_Epsilon) { for (int i = 0; i <= n; i++) { if (i != iLowest) { #if QL_ARRAY_EXPRESSIONS vertices_[i] = 0.5 * (vertices_[i] + vertices_[iLowest]); #else vertices_[i] += vertices_[iLowest]; vertices_[i] *= 0.5; #endif values_[i] = P.value(vertices_[i]); } } } } } // If can't extrapolate given the constraints, exit if (Math.Abs(factor) <= Const.QL_Epsilon) { x_ = vertices_[iLowest]; double low = values_[iLowest]; P.setFunctionValue(low); P.setCurrentValue(x_); return EndCriteria.Type.StationaryFunctionValue; } } while (end == false); throw new ApplicationException("optimization failed: unexpected behaviour"); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); currentProblem_ = P; initCostValues_ = P.costFunction().values(x_); int m = initCostValues_.size(); int n = x_.size(); Vector xx = new Vector(x_); Vector fvec = new Vector(m), diag = new Vector(n); int mode = 1; double factor = 1; int nprint = 0; int info = 0; int nfev =0; Matrix fjac = new Matrix(m, n); int ldfjac = m; List<int> ipvt = new InitializedList<int>(n); Vector qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m); // call lmdif to minimize the sum of the squares of m functions // in n variables by the Levenberg-Marquardt algorithm. MINPACK.lmdif(m, n, xx, ref fvec, endCriteria.functionEpsilon(), xtol_, gtol_, endCriteria.maxIterations(), epsfcn_, diag, mode, factor, nprint, ref info, ref nfev, ref fjac, ldfjac, ref ipvt, ref qtf, wa1, wa2, wa3, wa4, fcn); info_ = info; // check requirements & endCriteria evaluation if(info == 0) throw new ApplicationException("MINPACK: improper input parameters"); //if(info == 6) throw new ApplicationException("MINPACK: ftol is too small. no further " + // "reduction in the sum of squares is possible."); if (info != 6) ecType = EndCriteria.Type.StationaryFunctionValue; //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has reached or exceeded maxfev."); endCriteria.checkMaxIterations(nfev, ref ecType); if(info == 7) throw new ApplicationException("MINPACK: xtol is too small. no further " + "improvement in the approximate " + "solution x is possible."); if(info == 8) throw new ApplicationException("MINPACK: gtol is too small. fvec is " + "orthogonal to the columns of the " + "jacobian to machine precision."); // set problem x_ = new Vector(xx.GetRange(0, n)); P.setCurrentValue(x_); P.setFunctionValue(P.costFunction().value(x_)); return ecType; }
//! solve the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // Initializations double ftol = endCriteria.functionEpsilon(); int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria P.reset(); // reset problem Vector x_ = P.currentValue(); // store the starting point int iterationNumber_ =0; // stationaryStateIterationNumber_=0 lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search bool done = false; // function and squared norm of gradient values; double fnew; double fold; double gold2; double c; double fdiff; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gradient g at the size of the optimization problem search direction int sz = lineSearch_.searchDirection.Count; Vector g = new Vector(sz); Vector d = new Vector(sz); Vector sddiff = new Vector(sz); // Initialize cost function, gradient g and search direction P.setFunctionValue(P.valueAndGradient(g, x_)); P.setGradientNormValue(Vector.DotProduct(g, g)); lineSearch_.searchDirection = g * -1.0; // Loop over iterations do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); // don't throw: it can fail just because maxIterations exceeded //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!"); if (lineSearch_.succeed()) { // Updates d = lineSearch_.searchDirection; // New point x_ = lineSearch_.lastX(); // New function value fold = P.functionValue(); P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors g = lineSearch_.lastGradient(); // orthogonalization coef gold2 = P.gradientNormValue(); P.setGradientNormValue(lineSearch_.lastGradientNorm2()); c = P.gradientNormValue() / gold2; // conjugate gradient search direction sddiff = ((g*-1.0) + c * d) - lineSearch_.searchDirection; normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff)); lineSearch_.searchDirection = (g*-1.0) + c * d; // Now compute accuracy and check end criteria // Numerical Recipes exit strategy on fx (see NR in C++, p.423) fnew = P.functionValue(); fdiff = 2.0 *Math.Abs(fnew-fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon); if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); return ecType; } //done = endCriteria(iterationNumber_, // stationaryStateIterationNumber_, // true, //FIXME: it should be in the problem // fold, // std::sqrt(gold2), // P.functionValue(), // std::sqrt(P.gradientNormValue()), // ecType); P.setCurrentValue(x_); // update problem current value ++iterationNumber_; // Increase iteration number } else { done =true; } } while (!done); P.setCurrentValue(x_); return ecType; }
//! solve the optimization problem P public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // Initializations double ftol = endCriteria.functionEpsilon(); int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria P.reset(); // reset problem Vector x_ = P.currentValue(); // store the starting point int iterationNumber_ = 0; // stationaryStateIterationNumber_=0 lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search bool done = false; // function and squared norm of gradient values; double fnew; double fold; double gold2; double c; double fdiff; double normdiff; // classical initial value for line-search step double t = 1.0; // Set gradient g at the size of the optimization problem search direction int sz = lineSearch_.searchDirection.Count; Vector g = new Vector(sz); Vector d = new Vector(sz); Vector sddiff = new Vector(sz); // Initialize cost function, gradient g and search direction P.setFunctionValue(P.valueAndGradient(g, x_)); P.setGradientNormValue(Vector.DotProduct(g, g)); lineSearch_.searchDirection = g * -1.0; // Loop over iterations do { // Linesearch t = lineSearch_.value(P, ref ecType, endCriteria, t); // don't throw: it can fail just because maxIterations exceeded //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!"); if (lineSearch_.succeed()) { // Updates d = lineSearch_.searchDirection; // New point x_ = lineSearch_.lastX(); // New function value fold = P.functionValue(); P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors g = lineSearch_.lastGradient(); // orthogonalization coef gold2 = P.gradientNormValue(); P.setGradientNormValue(lineSearch_.lastGradientNorm2()); c = P.gradientNormValue() / gold2; // conjugate gradient search direction sddiff = ((g * -1.0) + c * d) - lineSearch_.searchDirection; normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff)); lineSearch_.searchDirection = (g * -1.0) + c * d; // Now compute accuracy and check end criteria // Numerical Recipes exit strategy on fx (see NR in C++, p.423) fnew = P.functionValue(); fdiff = 2.0 * Math.Abs(fnew - fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon); if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); return(ecType); } //done = endCriteria(iterationNumber_, // stationaryStateIterationNumber_, // true, //FIXME: it should be in the problem // fold, // std::sqrt(gold2), // P.functionValue(), // std::sqrt(P.gradientNormValue()), // ecType); P.setCurrentValue(x_); // update problem current value ++iterationNumber_; // Increase iteration number } else { done = true; } } while (!done); P.setCurrentValue(x_); return(ecType); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { // Initializations double ftol = endCriteria.functionEpsilon(); int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria P.reset(); // reset problem Vector x_ = P.currentValue(); // store the starting point int iterationNumber_ = 0; // dimension line search lineSearch_.searchDirection = new Vector(x_.size()); bool done = false; // function and squared norm of gradient values double fnew, fold, gold2; double fdiff; // classical initial value for line-search step double t = 1.0; // Set gradient g at the size of the optimization problem // search direction int sz = lineSearch_.searchDirection.size(); Vector prevGradient = new Vector(sz), d = new Vector(sz), sddiff = new Vector(sz), direction = new Vector(sz); // Initialize cost function, gradient prevGradient and search direction P.setFunctionValue(P.valueAndGradient(prevGradient, x_)); P.setGradientNormValue(Vector.DotProduct(prevGradient, prevGradient)); lineSearch_.searchDirection = prevGradient * -1; bool first_time = true; // Loop over iterations do { // Linesearch if (!first_time) { prevGradient = lineSearch_.lastGradient(); } t = (lineSearch_.value(P, ref ecType, endCriteria, t)); // don't throw: it can fail just because maxIterations exceeded if (lineSearch_.succeed()) { // Updates // New point x_ = lineSearch_.lastX(); // New function value fold = P.functionValue(); P.setFunctionValue(lineSearch_.lastFunctionValue()); // New gradient and search direction vectors // orthogonalization coef gold2 = P.gradientNormValue(); P.setGradientNormValue(lineSearch_.lastGradientNorm2()); // conjugate gradient search direction direction = getUpdatedDirection(P, gold2, prevGradient); sddiff = direction - lineSearch_.searchDirection; lineSearch_.searchDirection = direction; // Now compute accuracy and check end criteria // Numerical Recipes exit strategy on fx (see NR in C++, p.423) fnew = P.functionValue(); fdiff = 2.0 * Math.Abs(fnew - fold) / (Math.Abs(fnew) + Math.Abs(fold) + Const.QL_EPSILON); if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType)) { endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType); endCriteria.checkMaxIterations(iterationNumber_, ref ecType); return(ecType); } P.setCurrentValue(x_); // update problem current value ++iterationNumber_; // Increase iteration number first_time = false; } else { done = true; } }while (!done); P.setCurrentValue(x_); return(ecType); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); currentProblem_ = P; initCostValues_ = P.costFunction().values(x_); int m = initCostValues_.size(); int n = x_.size(); if (useCostFunctionsJacobian_) { initJacobian_ = new Matrix(m, n); P.costFunction().jacobian(initJacobian_, x_); } Vector xx = new Vector(x_); Vector fvec = new Vector(m), diag = new Vector(n); int mode = 1; double factor = 1; int nprint = 0; int info = 0; int nfev = 0; Matrix fjac = new Matrix(m, n); int ldfjac = m; List <int> ipvt = new InitializedList <int>(n); Vector qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m); // call lmdif to minimize the sum of the squares of m functions // in n variables by the Levenberg-Marquardt algorithm. Func <int, int, Vector, int, Matrix> j = null; if (useCostFunctionsJacobian_) { j = jacFcn; } // requirements; check here to get more detailed error messages. Utils.QL_REQUIRE(n > 0, () => "no variables given"); Utils.QL_REQUIRE(m >= n, () => $"less functions ({m}) than available variables ({n})"); Utils.QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0, () => "negative f tolerance"); Utils.QL_REQUIRE(xtol_ >= 0.0, () => "negative x tolerance"); Utils.QL_REQUIRE(gtol_ >= 0.0, () => "negative g tolerance"); Utils.QL_REQUIRE(endCriteria.maxIterations() > 0, () => "null number of evaluations"); MINPACK.lmdif(m, n, xx, ref fvec, endCriteria.functionEpsilon(), xtol_, gtol_, endCriteria.maxIterations(), epsfcn_, diag, mode, factor, nprint, ref info, ref nfev, ref fjac, ldfjac, ref ipvt, ref qtf, wa1, wa2, wa3, wa4, fcn, j); info_ = info; // check requirements & endCriteria evaluation Utils.QL_REQUIRE(info != 0, () => "MINPACK: improper input parameters"); if (info != 6) { ecType = EndCriteria.Type.StationaryFunctionValue; } endCriteria.checkMaxIterations(nfev, ref ecType); Utils.QL_REQUIRE(info != 7, () => "MINPACK: xtol is too small. no further " + "improvement in the approximate " + "solution x is possible."); Utils.QL_REQUIRE(info != 8, () => "MINPACK: gtol is too small. fvec is " + "orthogonal to the columns of the " + "jacobian to machine precision."); // set problem x_ = new Vector(xx.GetRange(0, n)); P.setCurrentValue(x_); P.setFunctionValue(P.costFunction().value(x_)); return(ecType); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x_ = P.currentValue(); currentProblem_ = P; initCostValues_ = P.costFunction().values(x_); int m = initCostValues_.size(); int n = x_.size(); if (useCostFunctionsJacobian_) { initJacobian_ = new Matrix(m, n); P.costFunction().jacobian(initJacobian_, x_); } Vector xx = new Vector(x_); Vector fvec = new Vector(m), diag = new Vector(n); int mode = 1; double factor = 1; int nprint = 0; int info = 0; int nfev = 0; Matrix fjac = new Matrix(m, n); int ldfjac = m; List <int> ipvt = new InitializedList <int>(n); Vector qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m); // call lmdif to minimize the sum of the squares of m functions // in n variables by the Levenberg-Marquardt algorithm. Func <int, int, Vector, int, Matrix> j = null; if (useCostFunctionsJacobian_) { j = jacFcn; } MINPACK.lmdif(m, n, xx, ref fvec, endCriteria.functionEpsilon(), xtol_, gtol_, endCriteria.maxIterations(), epsfcn_, diag, mode, factor, nprint, ref info, ref nfev, ref fjac, ldfjac, ref ipvt, ref qtf, wa1, wa2, wa3, wa4, fcn, j); info_ = info; // check requirements & endCriteria evaluation if (info == 0) { throw new ApplicationException("MINPACK: improper input parameters"); } //if(info == 6) throw new ApplicationException("MINPACK: ftol is too small. no further " + // "reduction in the sum of squares is possible."); if (info != 6) { ecType = EndCriteria.Type.StationaryFunctionValue; } //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has reached or exceeded maxfev."); endCriteria.checkMaxIterations(nfev, ref ecType); if (info == 7) { throw new ApplicationException("MINPACK: xtol is too small. no further " + "improvement in the approximate " + "solution x is possible."); } if (info == 8) { throw new ApplicationException("MINPACK: gtol is too small. fvec is " + "orthogonal to the columns of the " + "jacobian to machine precision."); } // set problem x_ = new Vector(xx.GetRange(0, n)); P.setCurrentValue(x_); P.setFunctionValue(P.costFunction().value(x_)); return(ecType); }
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) { int stationaryStateIterations_ = 0; EndCriteria.Type ecType = EndCriteria.Type.None; P.reset(); Vector x = P.currentValue(); iteration_ = 0; n_ = x.size(); ptry_ = new Vector(n_, 0.0); // build vertices vertices_ = new InitializedList <Vector>(n_ + 1, x); for (i_ = 0; i_ < n_; i_++) { Vector direction = new Vector(n_, 0.0); direction[i_] = 1.0; Vector tmp = vertices_[i_ + 1]; P.constraint().update(ref tmp, direction, lambda_); vertices_[i_ + 1] = tmp; } values_ = new Vector(n_ + 1, 0.0); for (i_ = 0; i_ <= n_; i_++) { if (!P.constraint().test(vertices_[i_])) { values_[i_] = Double.MaxValue; } else { values_[i_] = P.value(vertices_[i_]); } if (Double.IsNaN(ytry_)) { // handle NAN values_[i_] = Double.MaxValue; } } // minimize T_ = T0_; yb_ = Double.MaxValue; pb_ = new Vector(n_, 0.0); do { iterationT_ = iteration_; do { sum_ = new Vector(n_, 0.0); for (i_ = 0; i_ <= n_; i_++) { sum_ += vertices_[i_]; } tt_ = -T_; ilo_ = 0; ihi_ = 1; ynhi_ = values_[0] + tt_ * Math.Log(rng_.next().value); ylo_ = ynhi_; yhi_ = values_[1] + tt_ * Math.Log(rng_.next().value); if (ylo_ > yhi_) { ihi_ = 0; ilo_ = 1; ynhi_ = yhi_; yhi_ = ylo_; ylo_ = ynhi_; } for (i_ = 2; i_ < n_ + 1; i_++) { yt_ = values_[i_] + tt_ * Math.Log(rng_.next().value); if (yt_ <= ylo_) { ilo_ = i_; ylo_ = yt_; } if (yt_ > yhi_) { ynhi_ = yhi_; ihi_ = i_; yhi_ = yt_; } else { if (yt_ > ynhi_) { ynhi_ = yt_; } } } // GSL end criterion in x (cf. above) if (endCriteria.checkStationaryPoint(simplexSize(), 0.0, ref stationaryStateIterations_, ref ecType) || endCriteria.checkMaxIterations(iteration_, ref ecType)) { // no matter what, we return the best ever point ! P.setCurrentValue(pb_); P.setFunctionValue(yb_); return(ecType); } iteration_ += 2; amotsa(P, -1.0); if (ytry_ <= ylo_) { amotsa(P, 2.0); } else { if (ytry_ >= ynhi_) { ysave_ = yhi_; amotsa(P, 0.5); if (ytry_ >= ysave_) { for (i_ = 0; i_ < n_ + 1; i_++) { if (i_ != ilo_) { for (j_ = 0; j_ < n_; j_++) { sum_[j_] = 0.5 * (vertices_[i_][j_] + vertices_[ilo_][j_]); vertices_[i_][j_] = sum_[j_]; } values_[i_] = P.value(sum_); } } iteration_ += n_; for (i_ = 0; i_ < n_; i_++) { sum_[i_] = 0.0; } for (i_ = 0; i_ <= n_; i_++) { sum_ += vertices_[i_]; } } } else { iteration_ += 1; } } }while (iteration_ < iterationT_ + (scheme_ == Scheme.ConstantFactor ? m_ : 1)); switch (scheme_) { case Scheme.ConstantFactor: T_ *= (1.0 - epsilon_); break; case Scheme.ConstantBudget: if (iteration_ <= K_) { T_ = T0_ * Math.Pow(1.0 - Convert.ToDouble(iteration_) / Convert.ToDouble(K_), alpha_); } else { T_ = 0.0; } break; } }while (true); }