//! Solve least square problem using numerix solver public Vector perform(ref LeastSquareProblem lsProblem) { double eps = accuracy_; // wrap the least square problem in an optimization function LeastSquareFunction lsf = new LeastSquareFunction(lsProblem); // define optimization problem Problem P = new Problem(lsf, c_, initialValue_); // minimize EndCriteria ec = new EndCriteria(maxIterations_, Math.Min(maxIterations_ / 2, 100), eps, eps, eps); exitFlag_ = (int)om_.minimize(P, ec); results_ = P.currentValue(); resnorm_ = P.functionValue(); bestAccuracy_ = P.functionValue(); return(results_); }
//! Default constructor public LeastSquareFunction(LeastSquareProblem lsp) { lsp_ = lsp; }
//! Solve least square problem using numerix solver public Vector perform(ref LeastSquareProblem lsProblem) { double eps = accuracy_; // wrap the least square problem in an optimization function LeastSquareFunction lsf = new LeastSquareFunction(lsProblem); // define optimization problem Problem P = new Problem(lsf, c_, initialValue_); // minimize EndCriteria ec = new EndCriteria(maxIterations_, Math.Min((int)(maxIterations_ / 2), (int)(100)), eps, eps, eps); exitFlag_ = (int)om_.minimize(P, ec); // summarize results of minimization // nbIterations_ = om_->iterationNumber(); results_ = P.currentValue(); resnorm_ = P.functionValue(); bestAccuracy_ = P.functionValue(); return results_; }