コード例 #1
0
ファイル: levenbergmarquardt.cs プロジェクト: akasolace/qlnet
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) {
            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();
            currentProblem_ = P;
            initCostValues_ = P.costFunction().values(x_);
            int m = initCostValues_.size();
            int n = x_.size();

            Vector xx = new Vector(x_);
            Vector fvec = new Vector(m), diag = new Vector(n);

            int mode = 1;
            double factor = 1;
            int nprint = 0;
            int info = 0;
            int nfev =0;

            Matrix fjac = new Matrix(m, n);

            int ldfjac = m;
            
            List<int> ipvt = new InitializedList<int>(n);
            Vector qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m);

            // call lmdif to minimize the sum of the squares of m functions
            // in n variables by the Levenberg-Marquardt algorithm.
            MINPACK.lmdif(m, n, xx, ref fvec,
                                     endCriteria.functionEpsilon(),
                                     xtol_,
                                     gtol_,
                                     endCriteria.maxIterations(),
                                     epsfcn_,
                                     diag, mode, factor,
                                     nprint, ref info, ref nfev, ref fjac,
                                     ldfjac, ref ipvt, ref qtf,
                                     wa1, wa2, wa3, wa4,
                                     fcn);
            info_ = info;
            // check requirements & endCriteria evaluation
            if(info == 0) throw new ApplicationException("MINPACK: improper input parameters");
            //if(info == 6) throw new ApplicationException("MINPACK: ftol is too small. no further " +
            //                                             "reduction in the sum of squares is possible.");

            if (info != 6) ecType = EndCriteria.Type.StationaryFunctionValue;
            //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has reached or exceeded maxfev.");
            endCriteria.checkMaxIterations(nfev, ref ecType);
            if(info == 7) throw new ApplicationException("MINPACK: xtol is too small. no further " +
                                           "improvement in the approximate " +
                                           "solution x is possible.");
            if(info == 8) throw new ApplicationException("MINPACK: gtol is too small. fvec is " +
                                           "orthogonal to the columns of the " +
                                           "jacobian to machine precision.");
            // set problem
            x_ = new Vector(xx.GetRange(0, n));
            P.setCurrentValue(x_);
            P.setFunctionValue(P.costFunction().value(x_));

            return ecType;
        }
コード例 #2
0
ファイル: T_Optimizers.cs プロジェクト: akasolace/qlnet
        public void OptimizersTest()
        {
            //("Testing optimizers...");

            setup();

            // Loop over problems (currently there is only 1 problem)
            for (int i=0; i<costFunctions_.Count; ++i) {
                Problem problem = new Problem(costFunctions_[i], constraints_[i], initialValues_[i]);
                Vector initialValues = problem.currentValue();
                // Loop over optimizers
                for (int j = 0; j < (optimizationMethods_[i]).Count; ++j) {
                    double rootEpsilon = endCriterias_[i].rootEpsilon();
                    int endCriteriaTests = 1;
                   // Loop over rootEpsilon
                    for(int k=0; k<endCriteriaTests; ++k) {
                        problem.setCurrentValue(initialValues);
                        EndCriteria endCriteria = new EndCriteria(endCriterias_[i].maxIterations(),
                                                                  endCriterias_[i].maxStationaryStateIterations(),
                                                                  rootEpsilon,
                                                                  endCriterias_[i].functionEpsilon(),
                                                                  endCriterias_[i].gradientNormEpsilon());
                        rootEpsilon *= .1;
                        EndCriteria.Type endCriteriaResult =
                            optimizationMethods_[i][j].optimizationMethod.minimize(problem, endCriteria);
                        Vector xMinCalculated = problem.currentValue();
                        Vector yMinCalculated = problem.values(xMinCalculated);
                        // Check optimization results vs known solution
                        if (endCriteriaResult==EndCriteria.Type.None ||
                            endCriteriaResult==EndCriteria.Type.MaxIterations ||
                            endCriteriaResult==EndCriteria.Type.Unknown)
                            Assert.Fail("function evaluations: " + problem.functionEvaluation()  +
                                      " gradient evaluations: " + problem.gradientEvaluation() +
                                      " x expected:           " + xMinExpected_[i] +
                                      " x calculated:         " + xMinCalculated +
                                      " x difference:         " + (xMinExpected_[i]- xMinCalculated) +
                                      " rootEpsilon:          " + endCriteria.rootEpsilon() +
                                      " y expected:           " + yMinExpected_[i] +
                                      " y calculated:         " + yMinCalculated +
                                      " y difference:         " + (yMinExpected_[i]- yMinCalculated) +
                                      " functionEpsilon:      " + endCriteria.functionEpsilon() +
                                      " endCriteriaResult:    " + endCriteriaResult);
                    }
                }
            }
        }
コード例 #3
0
ファイル: ConjugateGradient.cs プロジェクト: ariesy/QLNet
        //! solve the optimization problem P
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();
            EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria
            P.reset(); // reset problem
            Vector x_ = P.currentValue(); // store the starting point
            int iterationNumber_ =0; // stationaryStateIterationNumber_=0
            lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search
            bool done = false;

            // function and squared norm of gradient values;
            double fnew;
            double fold;
            double gold2;
            double c;
            double fdiff;
            double normdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem search direction
            int sz = lineSearch_.searchDirection.Count;
            Vector g = new Vector(sz);
            Vector d = new Vector(sz);
            Vector sddiff = new Vector(sz);
            // Initialize cost function, gradient g and search direction
            P.setFunctionValue(P.valueAndGradient(g, x_));
            P.setGradientNormValue(Vector.DotProduct(g, g));
            lineSearch_.searchDirection = g * -1.0;
            // Loop over iterations
            do
            {
                // Linesearch
                t = lineSearch_.value(P, ref ecType, endCriteria, t);
                // don't throw: it can fail just because maxIterations exceeded
                //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!");
                if (lineSearch_.succeed())
                {
                    // Updates
                    d = lineSearch_.searchDirection;
                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors
                    g = lineSearch_.lastGradient();
                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());
                    c = P.gradientNormValue() / gold2;
                    // conjugate gradient search direction
                    sddiff = ((g*-1.0) + c * d) - lineSearch_.searchDirection;
                    normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff));
                    lineSearch_.searchDirection = (g*-1.0) + c * d;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew = P.functionValue();
                    fdiff = 2.0 *Math.Abs(fnew-fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon);
                    if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return ecType;
                    }
                    //done = endCriteria(iterationNumber_,
                    //                   stationaryStateIterationNumber_,
                    //                   true,  //FIXME: it should be in the problem
                    //                   fold,
                    //                   std::sqrt(gold2),
                    //                   P.functionValue(),
                    //                   std::sqrt(P.gradientNormValue()),
                    //                   ecType);
                    P.setCurrentValue(x_); // update problem current value
                    ++iterationNumber_; // Increase iteration number
                    }
                else
                {
                    done =true;
                }
            } while (!done);
            P.setCurrentValue(x_);
            return ecType;
        }
コード例 #4
0
        //! solve the optimization problem P
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None;    // reset end criteria
            P.reset();                                          // reset problem
            Vector x_ = P.currentValue();                       // store the starting point
            int    iterationNumber_ = 0;                        // stationaryStateIterationNumber_=0

            lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search
            bool done = false;

            // function and squared norm of gradient values;
            double fnew;
            double fold;
            double gold2;
            double c;
            double fdiff;
            double normdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem search direction
            int    sz     = lineSearch_.searchDirection.Count;
            Vector g      = new Vector(sz);
            Vector d      = new Vector(sz);
            Vector sddiff = new Vector(sz);

            // Initialize cost function, gradient g and search direction
            P.setFunctionValue(P.valueAndGradient(g, x_));
            P.setGradientNormValue(Vector.DotProduct(g, g));
            lineSearch_.searchDirection = g * -1.0;
            // Loop over iterations
            do
            {
                // Linesearch
                t = lineSearch_.value(P, ref ecType, endCriteria, t);
                // don't throw: it can fail just because maxIterations exceeded
                //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!");
                if (lineSearch_.succeed())
                {
                    // Updates
                    d = lineSearch_.searchDirection;
                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors
                    g = lineSearch_.lastGradient();
                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());
                    c = P.gradientNormValue() / gold2;
                    // conjugate gradient search direction
                    sddiff   = ((g * -1.0) + c * d) - lineSearch_.searchDirection;
                    normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff));
                    lineSearch_.searchDirection = (g * -1.0) + c * d;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew  = P.functionValue();
                    fdiff = 2.0 * Math.Abs(fnew - fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon);
                    if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return(ecType);
                    }
                    //done = endCriteria(iterationNumber_,
                    //                   stationaryStateIterationNumber_,
                    //                   true,  //FIXME: it should be in the problem
                    //                   fold,
                    //                   std::sqrt(gold2),
                    //                   P.functionValue(),
                    //                   std::sqrt(P.gradientNormValue()),
                    //                   ecType);
                    P.setCurrentValue(x_);                  // update problem current value
                    ++iterationNumber_;                     // Increase iteration number
                }
                else
                {
                    done = true;
                }
            } while (!done);
            P.setCurrentValue(x_);
            return(ecType);
        }
コード例 #5
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria
            P.reset();                                       // reset problem
            Vector x_ = P.currentValue();                    // store the starting point
            int    iterationNumber_ = 0;

            // dimension line search
            lineSearch_.searchDirection = new Vector(x_.size());
            bool done = false;

            // function and squared norm of gradient values
            double fnew, fold, gold2;
            double fdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem
            // search direction
            int    sz = lineSearch_.searchDirection.size();
            Vector prevGradient = new Vector(sz), d = new Vector(sz), sddiff = new Vector(sz), direction = new Vector(sz);

            // Initialize cost function, gradient prevGradient and search direction
            P.setFunctionValue(P.valueAndGradient(prevGradient, x_));
            P.setGradientNormValue(Vector.DotProduct(prevGradient, prevGradient));
            lineSearch_.searchDirection = prevGradient * -1;

            bool first_time = true;

            // Loop over iterations
            do
            {
                // Linesearch
                if (!first_time)
                {
                    prevGradient = lineSearch_.lastGradient();
                }
                t = (lineSearch_.value(P, ref ecType, endCriteria, t));
                // don't throw: it can fail just because maxIterations exceeded
                if (lineSearch_.succeed())
                {
                    // Updates

                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors

                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());

                    // conjugate gradient search direction
                    direction = getUpdatedDirection(P, gold2, prevGradient);

                    sddiff = direction - lineSearch_.searchDirection;
                    lineSearch_.searchDirection = direction;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew  = P.functionValue();
                    fdiff = 2.0 * Math.Abs(fnew - fold) /
                            (Math.Abs(fnew) + Math.Abs(fold) + Const.QL_EPSILON);
                    if (fdiff < ftol ||
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return(ecType);
                    }
                    P.setCurrentValue(x_); // update problem current value
                    ++iterationNumber_;    // Increase iteration number
                    first_time = false;
                }
                else
                {
                    done = true;
                }
            }while (!done);
            P.setCurrentValue(x_);
            return(ecType);
        }
コード例 #6
0
ファイル: LevenbergMarquardt.cs プロジェクト: igitur/qlnet
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();

            currentProblem_ = P;
            initCostValues_ = P.costFunction().values(x_);
            int m = initCostValues_.size();
            int n = x_.size();

            if (useCostFunctionsJacobian_)
            {
                initJacobian_ = new Matrix(m, n);
                P.costFunction().jacobian(initJacobian_, x_);
            }

            Vector xx = new Vector(x_);
            Vector fvec = new Vector(m), diag = new Vector(n);

            int    mode   = 1;
            double factor = 1;
            int    nprint = 0;
            int    info   = 0;
            int    nfev   = 0;

            Matrix fjac = new Matrix(m, n);

            int ldfjac = m;

            List <int> ipvt = new InitializedList <int>(n);
            Vector     qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m);

            // call lmdif to minimize the sum of the squares of m functions
            // in n variables by the Levenberg-Marquardt algorithm.
            Func <int, int, Vector, int, Matrix> j = null;

            if (useCostFunctionsJacobian_)
            {
                j = jacFcn;
            }

            // requirements; check here to get more detailed error messages.
            Utils.QL_REQUIRE(n > 0, () => "no variables given");
            Utils.QL_REQUIRE(m >= n, () => $"less functions ({m}) than available variables ({n})");
            Utils.QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0, () => "negative f tolerance");
            Utils.QL_REQUIRE(xtol_ >= 0.0, () => "negative x tolerance");
            Utils.QL_REQUIRE(gtol_ >= 0.0, () => "negative g tolerance");
            Utils.QL_REQUIRE(endCriteria.maxIterations() > 0, () => "null number of evaluations");

            MINPACK.lmdif(m, n, xx, ref fvec,
                          endCriteria.functionEpsilon(),
                          xtol_,
                          gtol_,
                          endCriteria.maxIterations(),
                          epsfcn_,
                          diag, mode, factor,
                          nprint, ref info, ref nfev, ref fjac,
                          ldfjac, ref ipvt, ref qtf,
                          wa1, wa2, wa3, wa4,
                          fcn, j);
            info_ = info;
            // check requirements & endCriteria evaluation
            Utils.QL_REQUIRE(info != 0, () => "MINPACK: improper input parameters");
            if (info != 6)
            {
                ecType = EndCriteria.Type.StationaryFunctionValue;
            }
            endCriteria.checkMaxIterations(nfev, ref ecType);
            Utils.QL_REQUIRE(info != 7, () => "MINPACK: xtol is too small. no further " +
                             "improvement in the approximate " +
                             "solution x is possible.");
            Utils.QL_REQUIRE(info != 8, () => "MINPACK: gtol is too small. fvec is " +
                             "orthogonal to the columns of the " +
                             "jacobian to machine precision.");
            // set problem
            x_ = new Vector(xx.GetRange(0, n));
            P.setCurrentValue(x_);
            P.setFunctionValue(P.costFunction().value(x_));

            return(ecType);
        }
コード例 #7
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();

            currentProblem_ = P;
            initCostValues_ = P.costFunction().values(x_);
            int m = initCostValues_.size();
            int n = x_.size();

            if (useCostFunctionsJacobian_)
            {
                initJacobian_ = new Matrix(m, n);
                P.costFunction().jacobian(initJacobian_, x_);
            }

            Vector xx = new Vector(x_);
            Vector fvec = new Vector(m), diag = new Vector(n);

            int    mode   = 1;
            double factor = 1;
            int    nprint = 0;
            int    info   = 0;
            int    nfev   = 0;

            Matrix fjac = new Matrix(m, n);

            int ldfjac = m;

            List <int> ipvt = new InitializedList <int>(n);
            Vector     qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m);

            // call lmdif to minimize the sum of the squares of m functions
            // in n variables by the Levenberg-Marquardt algorithm.
            Func <int, int, Vector, int, Matrix> j = null;

            if (useCostFunctionsJacobian_)
            {
                j = jacFcn;
            }

            MINPACK.lmdif(m, n, xx, ref fvec,
                          endCriteria.functionEpsilon(),
                          xtol_,
                          gtol_,
                          endCriteria.maxIterations(),
                          epsfcn_,
                          diag, mode, factor,
                          nprint, ref info, ref nfev, ref fjac,
                          ldfjac, ref ipvt, ref qtf,
                          wa1, wa2, wa3, wa4,
                          fcn, j);
            info_ = info;
            // check requirements & endCriteria evaluation
            if (info == 0)
            {
                throw new ApplicationException("MINPACK: improper input parameters");
            }
            //if(info == 6) throw new ApplicationException("MINPACK: ftol is too small. no further " +
            //                                             "reduction in the sum of squares is possible.");

            if (info != 6)
            {
                ecType = EndCriteria.Type.StationaryFunctionValue;
            }
            //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has reached or exceeded maxfev.");
            endCriteria.checkMaxIterations(nfev, ref ecType);
            if (info == 7)
            {
                throw new ApplicationException("MINPACK: xtol is too small. no further " +
                                               "improvement in the approximate " +
                                               "solution x is possible.");
            }
            if (info == 8)
            {
                throw new ApplicationException("MINPACK: gtol is too small. fvec is " +
                                               "orthogonal to the columns of the " +
                                               "jacobian to machine precision.");
            }
            // set problem
            x_ = new Vector(xx.GetRange(0, n));
            P.setCurrentValue(x_);
            P.setFunctionValue(P.costFunction().value(x_));

            return(ecType);
        }