public LfmHullWhiteParameterization( LiborForwardModelProcess process, OptionletVolatilityStructure capletVol, Matrix correlation, int factors) : base(process.size(), factors) { diffusion_ = new Matrix(size_ - 1, factors_); fixingTimes_ = process.fixingTimes(); Matrix sqrtCorr = new Matrix(size_ - 1, factors_, 1.0); if (correlation.empty()) { Utils.QL_REQUIRE(factors_ == 1, () => "correlation matrix must be given for multi factor models"); } else { Utils.QL_REQUIRE(correlation.rows() == size_ - 1 && correlation.rows() == correlation.columns(), () => "wrong dimesion of the correlation matrix"); Utils.QL_REQUIRE(factors_ <= size_ - 1, () => "too many factors for given LFM process"); Matrix tmpSqrtCorr = MatrixUtilitites.pseudoSqrt(correlation, MatrixUtilitites.SalvagingAlgorithm.Spectral); // reduce to n factor model // "Reconstructing a valid correlation matrix from invalid data" // (<http://www.quarchome.org/correlationmatrix.pdf>) for (int i = 0; i < size_ - 1; ++i) { double d = 0; tmpSqrtCorr.row(i).GetRange(0, factors_).ForEach((ii, vv) => d += vv * tmpSqrtCorr.row(i)[ii]); for (int k = 0; k < factors_; ++k) { sqrtCorr[i, k] = tmpSqrtCorr.row(i).GetRange(0, factors_)[k] / Math.Sqrt(d); } } } List <double> lambda = new List <double>(); DayCounter dayCounter = process.index().dayCounter(); List <double> fixingTimes = process.fixingTimes(); List <Date> fixingDates = process.fixingDates(); for (int i = 1; i < size_; ++i) { double cumVar = 0.0; for (int j = 1; j < i; ++j) { cumVar += lambda[i - j - 1] * lambda[i - j - 1] * (fixingTimes[j + 1] - fixingTimes[j]); } double vol = capletVol.volatility(fixingDates[i], 0.0, false); double var = vol * vol * capletVol.dayCounter().yearFraction(fixingDates[0], fixingDates[i]); lambda.Add(Math.Sqrt((var - cumVar) / (fixingTimes[1] - fixingTimes[0]))); for (int q = 0; q < factors_; ++q) { diffusion_[i - 1, q] = sqrtCorr[i - 1, q] * lambda.Last(); } } covariance_ = diffusion_ * Matrix.transpose(diffusion_); }
// calculating swaption volatility matrix using // Rebonatos approx. formula. Be aware that this // matrix is valid only for regular fixings and // assumes that the fix and floating leg have the // same frequency public SwaptionVolatilityMatrix getSwaptionVolatilityMatrix() { if (swaptionVola != null) { return(swaptionVola); } IborIndex index = process_.index(); Date today = process_.fixingDates()[0]; int size = process_.size() / 2; Matrix volatilities = new Matrix(size, size); List <Date> exercises = new InitializedList <Date>(size); for (int i = 0; i < size; ++i) { exercises[i] = process_.fixingDates()[i + 1]; } List <Period> lengths = new InitializedList <Period>(size); for (int i = 0; i < size; ++i) { lengths[i] = (i + 1) * index.tenor(); } Vector f = process_.initialValues(); for (int k = 0; k < size; ++k) { int alpha = k; double t_alpha = process_.fixingTimes()[alpha + 1]; Matrix var = new Matrix(size, size); for (int i = alpha + 1; i <= k + size; ++i) { for (int j = i; j <= k + size; ++j) { var[i - alpha - 1, j - alpha - 1] = var[j - alpha - 1, i - alpha - 1] = covarProxy_.integratedCovariance(i, j, t_alpha, null); } } for (int l = 1; l <= size; ++l) { int beta = l + k; Vector w = w_0(alpha, beta); double sum = 0.0; for (int i = alpha + 1; i <= beta; ++i) { for (int j = alpha + 1; j <= beta; ++j) { sum += w[i] * w[j] * f[i] * f[j] * var[i - alpha - 1, j - alpha - 1]; } } volatilities[k, l - 1] = Math.Sqrt(sum / t_alpha) / S_0(alpha, beta); } } return(swaptionVola = new SwaptionVolatilityMatrix(today, exercises, lengths, volatilities, index.dayCounter())); }