public override void calculate() { // 1. Mesher HestonProcess process = model_.currentLink().process(); double maturity = process.time(arguments_.exercise.lastDate()); // 1.1 The variance mesher int tGridMin = 5; int tGridAvgSteps = Math.Max(tGridMin, tGrid_ / 50); FdmHestonLocalVolatilityVarianceMesher varianceMesher = new FdmHestonLocalVolatilityVarianceMesher(vGrid_, process, leverageFct_, maturity, tGridAvgSteps); // 1.2 the equity mesher StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; double?xMin = null; double?xMax = null; if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.DownOut) { xMin = Math.Log(arguments_.barrier.Value); } if (arguments_.barrierType == Barrier.Type.UpIn || arguments_.barrierType == Barrier.Type.UpOut) { xMax = Math.Log(arguments_.barrier.Value); } Fdm1dMesher equityMesher = new FdmBlackScholesMesher(xGrid_, FdmBlackScholesMesher.processHelper(process.s0(), process.dividendYield(), process.riskFreeRate(), varianceMesher.volaEstimate()), maturity, payoff.strike(), xMin, xMax, 0.0001, 1.5, new Pair <double?, double?>(), arguments_.cashFlow); FdmMesher mesher = new FdmMesherComposite(equityMesher, varianceMesher); // 2. Calculator StrikedTypePayoff rebatePayoff = new CashOrNothingPayoff(Option.Type.Call, 0.0, arguments_.rebate.Value); FdmInnerValueCalculator calculator = new FdmLogInnerValue(rebatePayoff, mesher, 0); // 3. Step conditions Utils.QL_REQUIRE(arguments_.exercise.type() == Exercise.Type.European, () => "only european style option are supported"); FdmStepConditionComposite conditions = FdmStepConditionComposite.vanillaComposite( arguments_.cashFlow, arguments_.exercise, mesher, calculator, process.riskFreeRate().currentLink().referenceDate(), process.riskFreeRate().currentLink().dayCounter()); // 4. Boundary conditions FdmBoundaryConditionSet boundaries = new FdmBoundaryConditionSet(); if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.DownOut) { boundaries.Add(new FdmDirichletBoundary(mesher, arguments_.rebate.Value, 0, FdmDirichletBoundary.Side.Lower)); } if (arguments_.barrierType == Barrier.Type.UpIn || arguments_.barrierType == Barrier.Type.UpOut) { boundaries.Add(new FdmDirichletBoundary(mesher, arguments_.rebate.Value, 0, FdmDirichletBoundary.Side.Upper)); } // 5. Solver FdmSolverDesc solverDesc = new FdmSolverDesc(); solverDesc.mesher = mesher; solverDesc.bcSet = boundaries; solverDesc.condition = conditions; solverDesc.calculator = calculator; solverDesc.maturity = maturity; solverDesc.dampingSteps = dampingSteps_; solverDesc.timeSteps = tGrid_; FdmHestonSolver solver = new FdmHestonSolver( new Handle <HestonProcess>(process), solverDesc, schemeDesc_, new Handle <FdmQuantoHelper>(), leverageFct_); double spot = process.s0().currentLink().value(); results_.value = solver.valueAt(spot, process.v0()); results_.delta = solver.deltaAt(spot, process.v0()); results_.gamma = solver.gammaAt(spot, process.v0()); results_.theta = solver.thetaAt(spot, process.v0()); }
public override void calculate() { // 1. Mesher StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; double maturity = process_.time(arguments_.exercise.lastDate()); double?xMin = null; double?xMax = null; if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.DownOut) { xMin = Math.Log(arguments_.barrier.Value); } if (arguments_.barrierType == Barrier.Type.UpIn || arguments_.barrierType == Barrier.Type.UpOut) { xMax = Math.Log(arguments_.barrier.Value); } Fdm1dMesher equityMesher = new FdmBlackScholesMesher(xGrid_, process_, maturity, payoff.strike(), xMin, xMax, 0.0001, 1.5, new Pair <double?, double?>(), arguments_.cashFlow); FdmMesher mesher = new FdmMesherComposite(equityMesher); // 2. Calculator FdmInnerValueCalculator calculator = new FdmLogInnerValue(payoff, mesher, 0); // 3. Step conditions List <IStepCondition <Vector> > stepConditions = new List <IStepCondition <Vector> >(); List <List <double> > stoppingTimes = new List <List <double> >(); // 3.1 Step condition if discrete dividends FdmDividendHandler dividendCondition = new FdmDividendHandler(arguments_.cashFlow, mesher, process_.riskFreeRate().currentLink().referenceDate(), process_.riskFreeRate().currentLink().dayCounter(), 0); if (!arguments_.cashFlow.empty()) { stepConditions.Add(dividendCondition); stoppingTimes.Add(dividendCondition.dividendTimes()); } Utils.QL_REQUIRE(arguments_.exercise.type() == Exercise.Type.European, () => "only european style option are supported"); FdmStepConditionComposite conditions = new FdmStepConditionComposite(stoppingTimes, stepConditions); // 4. Boundary conditions FdmBoundaryConditionSet boundaries = new FdmBoundaryConditionSet(); if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.DownOut) { boundaries.Add( new FdmDirichletBoundary(mesher, arguments_.rebate.Value, 0, FdmDirichletBoundary.Side.Lower)); } if (arguments_.barrierType == Barrier.Type.UpIn || arguments_.barrierType == Barrier.Type.UpOut) { boundaries.Add( new FdmDirichletBoundary(mesher, arguments_.rebate.Value, 0, FdmDirichletBoundary.Side.Upper)); } // 5. Solver FdmSolverDesc solverDesc = new FdmSolverDesc(); solverDesc.mesher = mesher; solverDesc.bcSet = boundaries; solverDesc.condition = conditions; solverDesc.calculator = calculator; solverDesc.maturity = maturity; solverDesc.dampingSteps = dampingSteps_; solverDesc.timeSteps = tGrid_; FdmBlackScholesSolver solver = new FdmBlackScholesSolver( new Handle <GeneralizedBlackScholesProcess>(process_), payoff.strike(), solverDesc, schemeDesc_, localVol_, illegalLocalVolOverwrite_); double spot = process_.x0(); results_.value = solver.valueAt(spot); results_.delta = solver.deltaAt(spot); results_.gamma = solver.gammaAt(spot); results_.theta = solver.thetaAt(spot); // 6. Calculate vanilla option and rebate for in-barriers if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.UpIn) { // Cast the payoff StrikedTypePayoff castedPayoff = arguments_.payoff as StrikedTypePayoff; // Calculate the vanilla option DividendVanillaOption vanillaOption = new DividendVanillaOption(castedPayoff, arguments_.exercise, dividendCondition.dividendDates(), dividendCondition.dividends()); vanillaOption.setPricingEngine( new FdBlackScholesVanillaEngine( process_, tGrid_, xGrid_, 0, // dampingSteps schemeDesc_, localVol_, illegalLocalVolOverwrite_)); // Calculate the rebate value DividendBarrierOption rebateOption = new DividendBarrierOption(arguments_.barrierType, arguments_.barrier.Value, arguments_.rebate.Value, castedPayoff, arguments_.exercise, dividendCondition.dividendDates(), dividendCondition.dividends()); int min_grid_size = 50; int rebateDampingSteps = (dampingSteps_ > 0) ? Math.Min(1, dampingSteps_ / 2) : 0; rebateOption.setPricingEngine(new FdBlackScholesRebateEngine( process_, tGrid_, Math.Max(min_grid_size, xGrid_ / 5), rebateDampingSteps, schemeDesc_, localVol_, illegalLocalVolOverwrite_)); results_.value = vanillaOption.NPV() + rebateOption.NPV() - results_.value; results_.delta = vanillaOption.delta() + rebateOption.delta() - results_.delta; results_.gamma = vanillaOption.gamma() + rebateOption.gamma() - results_.gamma; results_.theta = vanillaOption.theta() + rebateOption.theta() - results_.theta; } }
public override void calculate() { // 1. Mesher StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; double maturity = process_.time(arguments_.exercise.lastDate()); double?xMin = null; double?xMax = null; if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.DownOut) { xMin = Math.Log(arguments_.barrier.Value); } if (arguments_.barrierType == Barrier.Type.UpIn || arguments_.barrierType == Barrier.Type.UpOut) { xMax = Math.Log(arguments_.barrier.Value); } Fdm1dMesher equityMesher = new FdmBlackScholesMesher(xGrid_, process_, maturity, payoff.strike(), xMin, xMax, 0.0001, 1.5, new Pair <double?, double?>(), arguments_.cashFlow); FdmMesher mesher = new FdmMesherComposite(equityMesher); // 2. Calculator StrikedTypePayoff rebatePayoff = new CashOrNothingPayoff(Option.Type.Call, 0.0, arguments_.rebate.Value); FdmInnerValueCalculator calculator = new FdmLogInnerValue(rebatePayoff, mesher, 0); // 3. Step conditions Utils.QL_REQUIRE(arguments_.exercise.type() == Exercise.Type.European, () => "only european style option are supported"); FdmStepConditionComposite conditions = FdmStepConditionComposite.vanillaComposite( arguments_.cashFlow, arguments_.exercise, mesher, calculator, process_.riskFreeRate().currentLink().referenceDate(), process_.riskFreeRate().currentLink().dayCounter()); // 4. Boundary conditions FdmBoundaryConditionSet boundaries = new FdmBoundaryConditionSet(); if (arguments_.barrierType == Barrier.Type.DownIn || arguments_.barrierType == Barrier.Type.DownOut) { boundaries.Add(new FdmDirichletBoundary(mesher, arguments_.rebate.Value, 0, FdmDirichletBoundary.Side.Lower)); } if (arguments_.barrierType == Barrier.Type.UpIn || arguments_.barrierType == Barrier.Type.UpOut) { boundaries.Add(new FdmDirichletBoundary(mesher, arguments_.rebate.Value, 0, FdmDirichletBoundary.Side.Upper)); } // 5. Solver FdmSolverDesc solverDesc = new FdmSolverDesc(); solverDesc.mesher = mesher; solverDesc.bcSet = boundaries; solverDesc.condition = conditions; solverDesc.calculator = calculator; solverDesc.maturity = maturity; solverDesc.dampingSteps = dampingSteps_; solverDesc.timeSteps = tGrid_; FdmBlackScholesSolver solver = new FdmBlackScholesSolver( new Handle <GeneralizedBlackScholesProcess>(process_), payoff.strike(), solverDesc, schemeDesc_, localVol_, illegalLocalVolOverwrite_); double spot = process_.x0(); results_.value = solver.valueAt(spot); results_.delta = solver.deltaAt(spot); results_.gamma = solver.gammaAt(spot); results_.theta = solver.thetaAt(spot); }
public FdmSolverDesc getSolverDesc(double x) { // 1. Mesher HestonProcess process = model_.currentLink().process(); double maturity = process.time(arguments_.exercise.lastDate()); // 1.1 The variance mesher int tGridMin = 5; FdmHestonVarianceMesher varianceMesher = new FdmHestonVarianceMesher(vGrid_, process, maturity, Math.Max(tGridMin, tGrid_ / 50)); // 1.2 The equity mesher StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; Fdm1dMesher equityMesher; if (strikes_.empty()) { equityMesher = new FdmBlackScholesMesher( xGrid_, FdmBlackScholesMesher.processHelper( process.s0(), process.dividendYield(), process.riskFreeRate(), varianceMesher.volaEstimate()), maturity, payoff.strike(), null, null, 0.0001, x, new Pair <double?, double?>(payoff.strike(), 0.1), arguments_.cashFlow); } else { Utils.QL_REQUIRE(arguments_.cashFlow.empty(), () => "multiple strikes engine " + "does not work with discrete dividends"); equityMesher = new FdmBlackScholesMultiStrikeMesher( xGrid_, FdmBlackScholesMesher.processHelper( process.s0(), process.dividendYield(), process.riskFreeRate(), varianceMesher.volaEstimate()), maturity, strikes_, 0.0001, x, new Pair <double?, double?>(payoff.strike(), 0.075)); } FdmMesher mesher = new FdmMesherComposite(equityMesher, varianceMesher); // 2. Calculator FdmInnerValueCalculator calculator = new FdmLogInnerValue(arguments_.payoff, mesher, 0); // 3. Step conditions FdmStepConditionComposite conditions = FdmStepConditionComposite.vanillaComposite( arguments_.cashFlow, arguments_.exercise, mesher, calculator, process.riskFreeRate().currentLink().referenceDate(), process.riskFreeRate().currentLink().dayCounter()); // 4. Boundary conditions FdmBoundaryConditionSet boundaries = new FdmBoundaryConditionSet(); // 5. Solver FdmSolverDesc solverDesc = new FdmSolverDesc(); solverDesc.mesher = mesher; solverDesc.bcSet = boundaries; solverDesc.condition = conditions; solverDesc.calculator = calculator; solverDesc.maturity = maturity; solverDesc.dampingSteps = dampingSteps_; solverDesc.timeSteps = tGrid_; return(solverDesc); }
public override void calculate() { // 0. Cash dividend model Date exerciseDate = arguments_.exercise.lastDate(); double maturity = process_.time(exerciseDate); Date settlementDate = process_.riskFreeRate().currentLink().referenceDate(); double spotAdjustment = 0.0; DividendSchedule dividendSchedule = new DividendSchedule(); switch (cashDividendModel_) { case CashDividendModel.Spot: dividendSchedule = arguments_.cashFlow; break; case CashDividendModel.Escrowed: foreach (Dividend divIter in dividendSchedule) { Date divDate = divIter.date(); if (divDate <= exerciseDate && divDate >= settlementDate) { double divAmount = divIter.amount(); double discount = process_.riskFreeRate().currentLink().discount(divDate) / process_.dividendYield().currentLink().discount(divDate); spotAdjustment -= divAmount * discount; } } Utils.QL_REQUIRE(process_.x0() + spotAdjustment > 0.0, () => "spot minus dividends becomes negative"); break; default: Utils.QL_FAIL("unknwon cash dividend model"); break; } // 1. Mesher StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; Fdm1dMesher equityMesher = new FdmBlackScholesMesher( xGrid_, process_, maturity, payoff.strike(), null, null, 0.0001, 1.5, new Pair <double?, double?>(payoff.strike(), 0.1), dividendSchedule, quantoHelper_, spotAdjustment); FdmMesher mesher = new FdmMesherComposite(equityMesher); // 2. Calculator FdmInnerValueCalculator calculator = new FdmLogInnerValue(payoff, mesher, 0); // 3. Step conditions FdmStepConditionComposite conditions = FdmStepConditionComposite.vanillaComposite( arguments_.cashFlow, arguments_.exercise, mesher, calculator, process_.riskFreeRate().currentLink().referenceDate(), process_.riskFreeRate().currentLink().dayCounter()); // 4. Boundary conditions FdmBoundaryConditionSet boundaries = new FdmBoundaryConditionSet(); // 5. Solver FdmSolverDesc solverDesc = new FdmSolverDesc(); solverDesc.mesher = mesher; solverDesc.bcSet = boundaries; solverDesc.condition = conditions; solverDesc.calculator = calculator; solverDesc.maturity = maturity; solverDesc.dampingSteps = dampingSteps_; solverDesc.timeSteps = tGrid_; FdmBlackScholesSolver solver = new FdmBlackScholesSolver( new Handle <GeneralizedBlackScholesProcess>(process_), payoff.strike(), solverDesc, schemeDesc_, localVol_, illegalLocalVolOverwrite_); double spot = process_.x0(); results_.value = solver.valueAt(spot); results_.delta = solver.deltaAt(spot); results_.gamma = solver.gammaAt(spot); results_.theta = solver.thetaAt(spot); }