public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, ref DistanceInput input) { cache = new SimplexCache(); ++GJKCalls; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, ref input.ProxyA, ref input.TransformA, ref input.ProxyB, ref input.TransformB); // Get simplex vertices as an array. const int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 <int> saveA = new FixedArray3 <int>(); FixedArray3 <int> saveB = new FixedArray3 <int>(); Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.LengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex.V[i].IndexA; saveB[i] = simplex.V[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex.V[simplex.Count]; vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MultiplyT(ref input.TransformA.R, -d)); vertex.WA = MathUtils.Multiply(ref input.TransformA, input.ProxyA.GetVertex(vertex.IndexA)); vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MultiplyT(ref input.TransformB.R, d)); vertex.WB = MathUtils.Multiply(ref input.TransformB, input.ProxyB.GetVertex(vertex.IndexB)); vertex.W = vertex.WB - vertex.WA; simplex.V[simplex.Count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++GJKIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } GJKMaxIters = Math.Max(GJKMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).Length(); output.Iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.UseRadii) { float rA = input.ProxyA.Radius; float rB = input.ProxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= rA + rB; Vector2 normal = output.PointB - output.PointA; normal.Normalize(); output.PointA += rA * normal; output.PointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.PointA + output.PointB); output.PointA = p; output.PointB = p; output.Distance = 0.0f; } } }
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, ref DistanceInput input) { cache = new SimplexCache(); ++GJKCalls; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, ref input.ProxyA, ref input.TransformA, ref input.ProxyB, ref input.TransformB); // Get simplex vertices as an array. const int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3<int> saveA = new FixedArray3<int>(); FixedArray3<int> saveB = new FixedArray3<int>(); Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.LengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex.V[i].IndexA; saveB[i] = simplex.V[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.Epsilon*Settings.Epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex.V[simplex.Count]; vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MultiplyT(ref input.TransformA.R, -d)); vertex.WA = MathUtils.Multiply(ref input.TransformA, input.ProxyA.GetVertex(vertex.IndexA)); vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MultiplyT(ref input.TransformB.R, d)); vertex.WB = MathUtils.Multiply(ref input.TransformB, input.ProxyB.GetVertex(vertex.IndexB)); vertex.W = vertex.WB - vertex.WA; simplex.V[simplex.Count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++GJKIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } GJKMaxIters = Math.Max(GJKMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).Length(); output.Iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.UseRadii) { float rA = input.ProxyA.Radius; float rB = input.ProxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= rA + rB; Vector2 normal = output.PointB - output.PointA; normal.Normalize(); output.PointA += rA*normal; output.PointB -= rB*normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f*(output.PointA + output.PointB); output.PointA = p; output.PointB = p; output.Distance = 0.0f; } } }
public static bool TestOverlap(Shape shapeA, int indexA, Shape shapeB, int indexB, ref Transform xfA, ref Transform xfB) { DistanceInput input = new DistanceInput(); input.ProxyA.Set(shapeA, indexA); input.ProxyB.Set(shapeB, indexB); input.TransformA = xfA; input.TransformB = xfB; input.UseRadii = true; SimplexCache cache; DistanceOutput output; Distance.ComputeDistance(out output, out cache, ref input); return output.Distance < 10.0f*Settings.Epsilon; }