コード例 #1
0
        public static void Evaluate(MLContext context, string outputModelPath = "famoccupancy_fastTreeTweedie.zip")
        {
            ConsoleWriteHeader("Evaluate family room occupancy Model");

            ITransformer trainedModel;

            using (var stream = File.OpenRead(outputModelPath))
            {
                trainedModel = context.Model.Load(stream);
            }

            var predictionFunct = trainedModel.MakePredictionFunction <OccupancyTrainer, OccupancyPrediction>(context);

            Console.WriteLine("** Testing sample date **");

            // Build sample data

            var dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("08-12-2018"),
                Occupied  = 0,
                TotalRoom = 22,
                Prev      = 0,
            };
            // Predict sample data
            var prediction = predictionFunct.Predict(dataSample);

            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 09-12-2018, - Real value: 7, Predicted Forecast: {prediction.Score}");


            Console.WriteLine("\n\n=============== Attempt to predict the next 14 days occupancy ===============");
            float ps    = 0;
            float oed   = 7;
            var   datey = DateTime.Parse("09-12-2018");

            for (int i = 0; i < 14; i++)
            {
                dataSample = new OccupancyTrainer()
                {
                    Date      = datey,
                    Occupied  = oed,
                    TotalRoom = 22,
                    Prev      = ps,
                };
                prediction = predictionFunct.Predict(dataSample);
                Console.WriteLine($"Date to predict: {dataSample.Date.AddDays(1)}, - Predicted Forecast: {prediction.Score}");

                datey = datey.AddDays(1);
                ps    = oed;
                oed   = prediction.Score;
            }
        }
コード例 #2
0
        private static IList <OccupancyTrainer> GetOccupancyData()
        {
            IList <OccupancyTrainer> occupancyList = new List <OccupancyTrainer>();

            using (var context = new AppContext())
            {
                var dblist = context.Occupancy.ToList();
                foreach (var item in dblist)
                {
                    OccupancyTrainer modelOcc = new OccupancyTrainer();
                    modelOcc.Date      = item.Date;
                    modelOcc.Occupied  = item.RoomOccupied;
                    modelOcc.TotalRoom = item.TotalRoom;
                    modelOcc.Next      = GetNextDayValue(item.Date);
                    modelOcc.Prev      = GetPrevDayValue(item.Date);

                    occupancyList.Add(modelOcc);
                }
            }
            return(occupancyList);
        }
コード例 #3
0
        public static void Evaluate(MLContext context, string outputModelPath = "occupancy_fastTreeTweedie.zip")
        {
            ConsoleWriteHeader("Evaluate Model");

            ITransformer trainedModel;

            using (var stream = File.OpenRead(outputModelPath))
            {
                trainedModel = context.Model.Load(stream);
            }

            var predictionFunct = trainedModel.MakePredictionFunction <OccupancyTrainer, OccupancyPrediction>(context);

            Console.WriteLine("** Testing sample date **");

            // Build sample data

            var dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("25-10-2018"),
                Occupied  = 40,
                TotalRoom = 71,
                Prev      = 51,
            };
            // Predict sample data
            var prediction = predictionFunct.Predict(dataSample);

            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 26-10-2018, - Real value: 40, Predicted Forecast: {prediction.Score}");

            dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("26-10-2018"),
                Occupied  = 40,
                TotalRoom = 71,
                Prev      = 40,
            };
            // Predict sample data
            prediction = predictionFunct.Predict(dataSample);
            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 27-10-2018, - Real value: 44, Predicted Forecast: {prediction.Score}");

            dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("05-12-2018"),
                Occupied  = 25,
                TotalRoom = 71,
                Prev      = 28,
            };
            // Predict sample data
            prediction = predictionFunct.Predict(dataSample);
            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 06-12-2018, - Real value: 14, Predicted Forecast: {prediction.Score}");

            dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("06-12-2018"),
                Occupied  = 14,
                TotalRoom = 71,
                Prev      = 25,
            };
            // Predict sample data
            prediction = predictionFunct.Predict(dataSample);
            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 07-12-2018, - Real value: 16, Predicted Forecast: {prediction.Score}");

            dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("07-12-2018"),
                Occupied  = 16,
                TotalRoom = 71,
                Prev      = 14,
            };
            // Predict sample data
            prediction = predictionFunct.Predict(dataSample);
            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 08-12-2018, - Real value: 13, Predicted Forecast: {prediction.Score}");

            dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("08-12-2018"),
                Occupied  = 13,
                TotalRoom = 71,
                Prev      = 16,
            };
            // Predict sample data
            prediction = predictionFunct.Predict(dataSample);
            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 09-12-2018, - Real value: 27, Predicted Forecast: {prediction.Score}");

            dataSample = new OccupancyTrainer()
            {
                Date      = DateTime.Parse("09-12-2018"),
                Occupied  = 27,
                TotalRoom = 71,
                Prev      = 13,
            };
            prediction = predictionFunct.Predict(dataSample);
            Console.WriteLine($"Date: {dataSample.Date}, date to predict: 10-12-2018, - Predicted Forecast: {prediction.Score}");



            Console.WriteLine("\n\n=============== Attempt to predict the next 14 days occupancy ===============");
            var appcontext   = new AppContext();
            var latestDate   = appcontext.Occupancy.Max(r => r.Date);
            var latestItem   = appcontext.Occupancy.Where(i => i.Date == latestDate).FirstOrDefault();
            var previousItem = appcontext.Occupancy.Where(i => i.Date == latestDate.AddDays(-1)).FirstOrDefault();


            float ps    = previousItem.RoomOccupied;
            float oed   = latestItem.RoomOccupied;
            var   datey = latestItem.Date;

            for (int i = 0; i < 14; i++)
            {
                dataSample = new OccupancyTrainer()
                {
                    Date      = datey,
                    Occupied  = oed,
                    TotalRoom = latestItem.TotalRoom,
                    Prev      = ps,
                };
                prediction = predictionFunct.Predict(dataSample);
                Console.WriteLine($"Date to predict: {dataSample.Date.AddDays(1)}, - Predicted Forecast: {prediction.Score}");

                datey = datey.AddDays(1);
                ps    = oed;
                oed   = prediction.Score;
            }
        }