コード例 #1
0
        public Histogram Build(IReadOnlyList <double> values, double binSize)
        {
            if (binSize < 1e-9)
            {
                throw new ArgumentException($"binSize ({binSize.ToString("0.##", DefaultCultureInfo.Instance)}) should be a positive number", nameof(binSize));
            }

            var list = values.CopyToArray();

            if (list.Length == 0)
            {
                throw new ArgumentException("Values should be non-empty", nameof(values));
            }

            Array.Sort(list);

            int firstBin = GetBinIndex(list.First(), binSize);
            int lastBin  = GetBinIndex(list.Last(), binSize);
            int binCount = lastBin - firstBin + 1;

            var bins    = new HistogramBin[binCount];
            int counter = 0;

            for (int i = 0; i < bins.Length; i++)
            {
                var    bin   = new List <double>();
                double lower = (firstBin + i) * binSize;
                double upper = (firstBin + i + 1) * binSize;

                while (counter < list.Length && (list[counter] < upper || i == bins.Length - 1))
                {
                    bin.Add(list[counter++]);
                }

                bins[i] = new HistogramBin(lower, upper, bin.ToArray());
            }

            return(new Histogram(binSize, bins));
        }
コード例 #2
0
ファイル: HistogramBin.cs プロジェクト: lhutyra/perfolizer
 public static HistogramBin Union(HistogramBin bin1, HistogramBin bin2) => new HistogramBin(
     Math.Min(bin1.Lower, bin2.Lower),
     Math.Max(bin1.Upper, bin2.Upper),
     bin1.Values.Union(bin2.Values).OrderBy(value => value).ToArray());
コード例 #3
0
        // TODO: Optimize
        public Histogram Build(IReadOnlyList <double> values, double binSize)
        {
            const double eps            = 1e-9;
            const double margin         = 0.1;
            const double adaptiveFactor = 0.02;

            if (binSize < eps)
            {
                throw new ArgumentException(
                          $"binSize ({binSize.ToString("0.##", DefaultCultureInfo.Instance)}) should be a positive number",
                          nameof(binSize));
            }
            if (binSize < Resolution)
            {
                binSize = Resolution;
            }
            binSize = NiceCeiling(binSize);

            var list = values.ToList();

            if (list.Count == 0)
            {
                throw new ArgumentException("Values should be non-empty", nameof(values));
            }

            list.Sort();
            if (list.Last() - list.First() < binSize)
            {
                double center = (list.First() + list.Last()) / 2;
                double lower  = center - binSize / 2;
                double upper  = center + binSize / 2;
                return(new Histogram(binSize, new[] { new HistogramBin(lower, upper, list.ToArray()) }));
            }

            var points = new List <double> {
                NiceFloor(list.Min() - binSize / 2), NiceCeiling(list.Max() + binSize / 2)
            };
            int processedPointCount = 0;

            while (true)
            {
                if (points.Count > 10 * list.Count)
                {
                    var errorMessage = new StringBuilder();
                    errorMessage.AppendLine("Failed to run AdaptiveHistogramBuilder.BuildWithFixedBinSize");
                    errorMessage.AppendLine("BinSize: " + binSize.ToString("N12", DefaultCultureInfo.Instance));
                    errorMessage.AppendLine("Values: ");
                    foreach (double value in list)
                    {
                        errorMessage.AppendLine("  " + value.ToString("N12", DefaultCultureInfo.Instance));
                    }
                    throw new InvalidOperationException(errorMessage.ToString());
                }

                int pointIndex = -1;
                for (int i = processedPointCount; i < points.Count - 1; i++)
                {
                    double adaptiveBinSize = (points[i] + points[i + 1]) / 2.0 * adaptiveFactor;
                    double maxSize         = Math.Max(binSize * (1.0 + 2 * margin), adaptiveBinSize);
                    if (points[i + 1] - points[i] > maxSize)
                    {
                        pointIndex = i;
                        break;
                    }
                }

                if (pointIndex == -1)
                {
                    break;
                }

                double lower = points[pointIndex];
                double upper = points[pointIndex + 1];

                int    bestIndex1 = -1;
                int    bestIndex2 = -1;
                int    bestCount  = -1;
                double bestDist   = double.MaxValue;

                bool Inside(double x) => x > lower - eps && x < upper - eps;

                for (int i = 0; i < list.Count; i++)
                {
                    if (Inside(list[i]))
                    {
                        int j = i;
                        while (j < list.Count && Inside(list[j]) && list[j] - list[i] < binSize)
                        {
                            j++;
                        }
                        int    count = j - i;
                        double dist  = list[j - 1] - list[i];
                        if (count > bestCount || count == bestCount && dist < bestDist)
                        {
                            bestCount  = count;
                            bestIndex1 = i;
                            bestIndex2 = j - 1;
                            bestDist   = dist;
                        }
                    }
                }

                if (bestIndex1 != -1)
                {
                    double center          = (list[bestIndex1] + list[bestIndex2]) / 2.0;
                    double adaptiveBinSize = Math.Max(binSize, center * adaptiveFactor);
                    double left            = NiceFloor(center - adaptiveBinSize / 2);
                    double right           = NiceFloor(Math.Min(center + adaptiveBinSize / 2, upper));

                    if (left > lower + binSize * margin)
                    {
                        points.Insert(pointIndex + 1, left);
                    }
                    else if (right < upper - binSize * margin && right > lower + binSize * margin)
                    {
                        points.Insert(pointIndex + 1, right);
                        processedPointCount++;
                    }
                    else
                    {
                        processedPointCount++;
                    }
                }
                else
                {
                    points.Insert(pointIndex + 1, NiceFloor(lower + binSize));
                    processedPointCount++;
                }
            }

            var bins    = new List <HistogramBin>(points.Count - 1);
            int counter = 0;

            for (int i = 0; i < points.Count - 1; i++)
            {
                var    bin   = new List <double>();
                double lower = points[i];
                double upper = points[i + 1];

                while (counter < list.Count && (list[counter] < upper || i == points.Count - 1))
                {
                    bin.Add(list[counter++]);
                }

                bins.Add(new HistogramBin(lower, upper, bin.ToArray()));
            }

            // Trim
            while (bins.Any() && bins.First().IsEmpty)
            {
                bins.RemoveAt(0);
            }
            while (bins.Any() && bins.Last().IsEmpty)
            {
                bins.RemoveAt(bins.Count - 1);
            }

            // Join small bins to neighbors
            counter = 0;
            double lastValue = 0;

            while (counter < bins.Count)
            {
                if (bins[counter].HasAny)
                {
                    lastValue = Math.Max(lastValue, bins[counter].Values.Last());
                }
                double adaptiveThreshold = Math.Max(binSize / 2, lastValue * adaptiveFactor);
                if (bins[counter].Gap < adaptiveThreshold)
                {
                    double leftGap  = counter > 0 ? bins[counter - 1].Gap : double.MaxValue;
                    double rightGap = counter < bins.Count - 1 ? bins[counter + 1].Gap : double.MaxValue;
                    if (leftGap < rightGap && counter > 0)
                    {
                        bins[counter - 1] = HistogramBin.Union(bins[counter - 1], bins[counter]);
                        bins.RemoveAt(counter);
                    }
                    else if (counter < bins.Count - 1)
                    {
                        bins[counter] = HistogramBin.Union(bins[counter], bins[counter + 1]);
                        bins.RemoveAt(counter + 1);
                    }
                    else
                    {
                        counter++;
                    }
                }
                else
                {
                    counter++;
                }
            }

            return(new Histogram(binSize, bins.ToArray()));
        }