コード例 #1
0
        public PointF NormalizedCentroid(Segment s)
        {
            //normalize the points (relative to the image center (0,0))
            PointF[] normalizedPoints = s.points.Select<Point, PointF>(p => new PointF(-0.5f + (float)p.X / imageWidth, -0.5f + (float)p.Y / imageHeight)).ToArray<PointF>();

            //Add the relative centroid
            float cX = 0;
            float cY = 0;
            foreach (PointF p in normalizedPoints)
            {
                cX += p.X;
                cY += p.Y;
            }
            cX /= normalizedPoints.Count();
            cY /= normalizedPoints.Count();
            return new PointF(cX, cY);
        }
コード例 #2
0
 public PointF RandomNormalizedInteriorPoint(Segment s)
 {
     PointF[] normalizedPoints = s.points.Select<Point, PointF>(p => new PointF(-0.5f + (float)p.X / imageWidth, -0.5f + (float)p.Y / imageHeight)).ToArray<PointF>();
     Random r = new Random();
     int randIndex = r.Next(normalizedPoints.Length);
     return normalizedPoints[randIndex];
 }
コード例 #3
0
        public void ComputeFeatures(Segment s)
        {
            //Add the relative size
            NamedFeature f = new NamedFeature("RelativeSize");
            f.values.Add(s.points.Count() / (double)(imageWidth * imageHeight));
            s.features.Add(f);

            // Relative centroid
            PointF c = NormalizedCentroid(s);
            s.features.Add(new NamedFeature("RelativeCentroid", new List<double>{c.X, c.Y}));

            // One interior point
            PointF np = RandomNormalizedInteriorPoint(s);
            s.features.Add(new NamedFeature("OneInteriorPoint", new List<double> { np.X, np.Y }));

            //Radial distance
            s.features.Add(new NamedFeature("RadialDistance", new List<double>{Math.Sqrt(c.X*c.X+c.Y*c.Y)}));

            //Normalized Discrete Compactness http://www.m-hikari.com/imf-password2009/25-28-2009/bribiescaIMF25-28-2009.pdf
            //Find the segment id
            Point sp = s.points.First();
            int sidx = assignments[sp.X, sp.Y];

            //count number of perimeter edges
            int perimeter = 0;
            foreach (Point p in s.points)
            {
                for (int i = -1; i <= 1; i++)
                {
                    for (int j = -1; j <= 1; j++)
                    {
                        if (Math.Abs(i) == Math.Abs(j))
                            continue;
                        if (Util.InBounds(p.X + i, p.Y + j, imageWidth, imageHeight) && assignments[p.X + i, p.Y + j] != sidx)
                            perimeter++;
                        else if (!Util.InBounds(p.X + i, p.Y + j, imageWidth, imageHeight)) //edge pixels should be considered perimeter too
                            perimeter++;
                    }
                }
            }
            int n = s.points.Count();
            double CD = (4.0 * n - perimeter) / 2;
            double CDmin = n - 1;
            double CDmax = (4 * n - 4 * Math.Sqrt(n)) / 2;
            double CDN = (CD - CDmin) / Math.Max(1,(CDmax - CDmin));
            s.features.Add(new NamedFeature("NormalizedDiscreteCompactness", new List<double> { CDN }));

            //Add elongation (width/length normalized between 0-square to 1-long http://hal.archives-ouvertes.fr/docs/00/44/60/37/PDF/ARS-Journal-SurveyPatternRecognition.pdf
            PointF[] points = s.points.Select<Point, PointF>(p => new PointF(p.X, p.Y)).ToArray<PointF>();
            Emgu.CV.Structure.MCvBox2D box = Emgu.CV.PointCollection.MinAreaRect(points);

            PointF[] vertices = box.GetVertices();
            double elongation = 1 - Math.Min(box.size.Width + 1, box.size.Height + 1) / Math.Max(box.size.Width + 1, box.size.Height + 1);
            s.features.Add(new NamedFeature("Elongation", new List<double>{elongation}));

            //Add Hu shape moments, invariant to translation, scale, and rotation (not sure what each measure refers to intuitively though, or if there is an intuitive analog)
            //They may also do badly on noisy data however. See: http://hal.archives-ouvertes.fr/docs/00/44/60/37/PDF/ARS-Journal-SurveyPatternRecognition.pdf (called Invariant Moments)

            Bitmap regionBitmap = new Bitmap(imageWidth, imageHeight);
            Graphics g = Graphics.FromImage(regionBitmap);
            g.FillRectangle(new SolidBrush(Color.Black), 0, 0, imageWidth, imageHeight);
            foreach (Point p in s.points)
            {
                regionBitmap.SetPixel(p.X, p.Y, Color.White);
            }

            Emgu.CV.Image<Gray, byte> region = new Emgu.CV.Image<Gray, byte>(regionBitmap);

            MCvMoments moment = region.GetMoments(true);
            MCvHuMoments hu = moment.GetHuMoment();
            s.features.Add(new NamedFeature("HuMoments", new List<double> {hu.hu1, hu.hu2, hu.hu3,hu.hu4,hu.hu5, hu.hu6, hu.hu7 }));
            region.Dispose();
            regionBitmap.Dispose();
        }