private void Compute(Matrix symmetricMatrix) { var tmpDiag = new SparseVector(size); Blas.Default.Copy(_diagonal, tmpDiag); var tmpAccumulate = new SparseVector(size); Matrix s = symmetricMatrix.Clone(); for (int ite = 1; ite <= MaxIterations; ite++) { // abs sum of upper triangel double sum = 0.0; for (int j = 0; j < size - 1; j++) { for (int k = j + 1; k < size; k++) { sum += Math.Abs(s[j, k]); } } if (sum == 0.0) { return; } // To speed up computation a threshold is introduced to // make sure it is worthy to perform the Jacobi rotation double threshold; if (ite < 5) { threshold = 0.2 * sum / (size * size); } else { threshold = 0.0; } // sweep upper triangle for (int j = 0; j < size - 1; j++) { for (int k = j + 1; k < size; k++) { double smll = Math.Abs(s[j, k]); if (ite > 5 && smll < EpsPrec * Math.Abs(_diagonal.Data[j]) && smll < EpsPrec * Math.Abs(_diagonal.Data[k])) { s[j, k] = 0.0; } else if (Math.Abs(s[j, k]) > threshold) { double heig = _diagonal.Data[k] - _diagonal.Data[j]; double tang; if (smll < EpsPrec * Math.Abs(heig)) { tang = s[j, k] / heig; } else { double beta = 0.5 * heig / s[j, k]; tang = 1.0 / (Math.Abs(beta) + Math.Sqrt(1.0 + beta * beta)); if (beta < 0.0) { tang = -tang; } } double cosin = 1.0 / Math.Sqrt(1.0 + tang * tang); double sine = tang * cosin; double rho = sine / (1.0 + cosin); heig = tang * s[j, k]; tmpAccumulate.Data[j] -= heig; tmpAccumulate.Data[k] += heig; _diagonal.Data[j] -= heig; _diagonal.Data[k] += heig; s[j, k] = 0.0; // perform rotation on upper triangle int l = 0; for ( ; l < j; l++) { JacobiRotate(s, rho, sine, l, j, l, k); } for (++l; l < k; l++) { JacobiRotate(s, rho, sine, j, l, l, k); } for (++l; l < size; l++) { JacobiRotate(s, rho, sine, j, l, k, l); } for (l = 0; l < size; l++) { JacobiRotate(_eigenVectors, rho, sine, l, j, l, k); } } } } // tmpDiag.Add(tmpAccumulate); // diagonal = tmpDiag.Clone(); // tmpAccumulate.Fill(0.0); for (int j = 0; j < size; j++) { tmpDiag.Data[j] += tmpAccumulate.Data[j]; _diagonal.Data[j] = tmpDiag.Data[j]; tmpAccumulate.Data[j] = 0.0; } } throw new ApplicationException("TODO: Too many iterations reached"); }
/// <summary>Construct the singular value decomposition.</summary> /// <remarks>Provides access to U, S and V.</remarks> /// <param name="Arg">Rectangular matrix</param> public SingularValueDecomposition(Matrix Arg) { transpose = (Arg.RowCount < Arg.ColumnCount); // Derived from LINPACK code. // Initialize. var A = Arg.Clone(); if (transpose) { A.Transpose(); } m = A.RowCount; n = A.ColumnCount; int nu = Math.Min(m, n); s = new double[Math.Min(m + 1, n)]; U = new Matrix(m, nu); V = new Matrix(n, n); var e = new double[n]; var work = new double[m]; const bool wantu = true; const bool wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. int nct = Math.Min(m - 1, n); int nrt = Math.Max(0, Math.Min(n - 2, m)); for (int k = 0; k < Math.Max(nct, nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (int i = k; i < m; i++) { s[k] = Fn.Hypot(s[k], A[i, k]); } if (s[k] != 0.0) { if (A[k, k] < 0.0) { s[k] = -s[k]; } for (int i = k; i < m; i++) { A[i, k] /= s[k]; } A[k, k] += 1.0; } s[k] = -s[k]; } for (int j = k + 1; j < n; j++) { if ((k < nct) & (s[k] != 0.0)) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) { t += A[i, k] * A[i, j]; } t = (-t) / A[k, k]; for (int i = k; i < m; i++) { A[i, j] += t * A[i, k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k, j]; } if (wantu & (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) { U[i, k] = A[i, k]; } } if (k >= nrt) { continue; } // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k + 1; i < n; i++) { e[k] = Fn.Hypot(e[k], e[i]); } if (e[k] != 0.0) { if (e[k + 1] < 0.0) { e[k] = -e[k]; } for (int i = k + 1; i < n; i++) { e[i] /= e[k]; } e[k + 1] += 1.0; } e[k] = -e[k]; if ((k + 1 < m) & (e[k] != 0.0)) { // Apply the transformation. for (int i = k + 1; i < m; i++) { work[i] = 0.0; } for (int j = k + 1; j < n; j++) { for (int i = k + 1; i < m; i++) { work[i] += e[j] * A[i, j]; } } for (int j = k + 1; j < n; j++) { double t = (-e[j]) / e[k + 1]; for (int i = k + 1; i < m; i++) { A[i, j] += t * work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (int i = k + 1; i < n; i++) { V[i, k] = e[i]; } } } // Set up the final bidiagonal matrix or order p. int p = System.Math.Min(n, m + 1); if (nct < n) { s[nct] = A[nct, nct]; } if (m < p) { s[p - 1] = 0.0; } if (nrt + 1 < p) { e[nrt] = A[nrt, p - 1]; } e[p - 1] = 0.0; // If required, generate U. if (wantu) { for (int j = nct; j < nu; j++) { for (int i = 0; i < m; i++) { U[i, j] = 0.0; } U[j, j] = 1.0; } for (int k = nct - 1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k + 1; j < nu; j++) { double t = 0; for (int i = k; i < m; i++) { t += U[i, k] * U[i, j]; } t = (-t) / U[k, k]; for (int i = k; i < m; i++) { U[i, j] += t * U[i, k]; } } for (int i = k; i < m; i++) { U[i, k] = -U[i, k]; } U[k, k] = 1.0 + U[k, k]; for (int i = 0; i < k - 1; i++) { U[i, k] = 0.0; } } else { for (int i = 0; i < m; i++) { U[i, k] = 0.0; } U[k, k] = 1.0; } } } // If required, generate V. if (wantv) { for (int k = n - 1; k >= 0; k--) { if ((k < nrt) & (e[k] != 0.0)) { for (int j = k + 1; j < nu; j++) { double t = 0; for (int i = k + 1; i < n; i++) { t += V[i, k] * V[i, j]; } t = (-t) / V[k + 1, k]; for (int i = k + 1; i < n; i++) { V[i, j] += t * V[i, k]; } } } for (int i = 0; i < n; i++) { V[i, k] = 0.0; } V[k, k] = 1.0; } } // Main iteration loop for the singular values. int pp = p - 1; int iter = 0; double eps = System.Math.Pow(2.0, -52.0); while (p > 0) { int k, kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p - 2; k >= -1; k--) { if (k == -1) { break; } if (Math.Abs(e[k]) > eps * (Math.Abs(s[k]) + Math.Abs(s[k + 1]))) { continue; } e[k] = 0.0; break; } if (k == p - 2) { kase = 4; } else { int ks; for (ks = p - 1; ks >= k; ks--) { if (ks == k) { break; } double t = (ks != p?Math.Abs(e[ks]):0.0) + (ks != k + 1?Math.Abs(e[ks - 1]):0.0); if (Math.Abs(s[ks]) > eps * t) { continue; } s[ks] = 0.0; break; } if (ks == k) { kase = 3; } else if (ks == p - 1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p - 2]; e[p - 2] = 0.0; for (int j = p - 2; j >= k; j--) { double t = Fn.Hypot(s[j], f); double cs = s[j] / t; double sn = f / t; s[j] = t; if (j != k) { f = (-sn) * e[j - 1]; e[j - 1] = cs * e[j - 1]; } if (wantv) { for (int i = 0; i < n; i++) { t = cs * V[i, j] + sn * V[i, p - 1]; V[i, p - 1] = (-sn) * V[i, j] + cs * V[i, p - 1]; V[i, j] = t; } } } } break; // Split at negligible s(k). case 2: { double f = e[k - 1]; e[k - 1] = 0.0; for (int j = k; j < p; j++) { double t = Fn.Hypot(s[j], f); double cs = s[j] / t; double sn = f / t; s[j] = t; f = (-sn) * e[j]; e[j] = cs * e[j]; if (wantu) { for (int i = 0; i < m; i++) { t = cs * U[i, j] + sn * U[i, k - 1]; U[i, k - 1] = (-sn) * U[i, j] + cs * U[i, k - 1]; U[i, j] = t; } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = System.Math.Max(System.Math.Max(System.Math.Max(System.Math.Max(System.Math.Abs(s[p - 1]), System.Math.Abs(s[p - 2])), System.Math.Abs(e[p - 2])), System.Math.Abs(s[k])), System.Math.Abs(e[k])); double sp = s[p - 1] / scale; double spm1 = s[p - 2] / scale; double epm1 = e[p - 2] / scale; double sk = s[k] / scale; double ek = e[k] / scale; double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0; double c = (sp * epm1) * (sp * epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = System.Math.Sqrt(b * b + c); if (b < 0.0) { shift = -shift; } shift = c / (b + shift); } double f = (sk + sp) * (sk - sp) + shift; double g = sk * ek; // Chase zeros. for (int j = k; j < p - 1; j++) { double t = Fn.Hypot(f, g); double cs = f / t; double sn = g / t; if (j != k) { e[j - 1] = t; } f = cs * s[j] + sn * e[j]; e[j] = cs * e[j] - sn * s[j]; g = sn * s[j + 1]; s[j + 1] = cs * s[j + 1]; if (wantv) { for (int i = 0; i < n; i++) { t = cs * V[i, j] + sn * V[i, j + 1]; V[i, j + 1] = (-sn) * V[i, j] + cs * V[i, j + 1]; V[i, j] = t; } } t = Fn.Hypot(f, g); cs = f / t; sn = g / t; s[j] = t; f = cs * e[j] + sn * s[j + 1]; s[j + 1] = (-sn) * e[j] + cs * s[j + 1]; g = sn * e[j + 1]; e[j + 1] = cs * e[j + 1]; if (!wantu || (j >= m - 1)) { continue; } for (int i = 0; i < m; i++) { t = cs * U[i, j] + sn * U[i, j + 1]; U[i, j + 1] = (-sn) * U[i, j] + cs * U[i, j + 1]; U[i, j] = t; } } e[p - 2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0?-s[k]:0.0); if (wantv) { for (int i = 0; i <= pp; i++) { V[i, k] = -V[i, k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k + 1]) { break; } double t = s[k]; s[k] = s[k + 1]; s[k + 1] = t; if (wantv && (k < n - 1)) { for (int i = 0; i < n; i++) { t = V[i, k + 1]; V[i, k + 1] = V[i, k]; V[i, k] = t; } } if (wantu && (k < m - 1)) { for (int i = 0; i < m; i++) { t = U[i, k + 1]; U[i, k + 1] = U[i, k]; U[i, k] = t; } } k++; } iter = 0; p--; } break; } } // (vermorel) transposing the results if needed if (!transpose) { return; } // swaping U and V Matrix T = V; V = U; U = T; }
/// <summary>LU Decomposition</summary> /// <param name="A"> Rectangular matrix /// </param> /// <returns> Structure to access L, U and piv. /// </returns> public LUDecomposition(Matrix A) { // Use a "left-looking", dot-product, Crout/Doolittle algorithm. _lu = A.Clone(); _piv = new int[m]; for (int i = 0; i < m; i++) { _piv[i] = i; } _pivsign = 1; //double[] LUrowi; var LUcolj = new double[m]; // Outer loop. for (int j = 0; j < n; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < m; i++) { LUcolj[i] = _lu[i, j]; } // Apply previous transformations. for (int i = 0; i < m; i++) { //LUrowi = LU[i]; // Most of the time is spent in the following dot product. int kmax = Math.Min(i, j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += _lu[i, k] * LUcolj[k]; } _lu[i, j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j + 1; i < m; i++) { if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < n; k++) { double t = _lu[p, k]; _lu[p, k] = _lu[j, k]; _lu[j, k] = t; } int k2 = _piv[p]; _piv[p] = _piv[j]; _piv[j] = k2; _pivsign = -_pivsign; } // Compute multipliers. if (j < m & _lu[j, j] != 0.0) { for (int i = j + 1; i < m; i++) { _lu[i, j] /= _lu[j, j]; } } } }