//the final normalized and concatenated file doesnt need to be vectorized + normalized again. // if first line "instances data = " is 4 and the rest of the lines are 3, then the trick is used. // if all lines are 3 then only tr3 is used // if all lines except the saveArff is tr4 then it will use tr4 data and save to a filename with "3" in it, at the moment this is done for compatibility when loading this file in real-time public static Instances ConcatenationPipeLine(string filenameTR3, string filenameTR4) { //filter tr3 based on top 1000 from tr4 (the trick) //load TR4 !!! NOTE: trick changed from tr4 to 3 because i didnt see any increase in % in real time.. + this line can be removed to speed up things. Instances data; if (GuiPreferences.Instance.CbPeekHigherTRsIGChecked) { GuiPreferences.Instance.setLog("using final dataset: " + filenameTR4); data = WekaTrainingMethods.loadDataSetFile(filenameTR4); // peeking at a higher TR's IG values (trick) } else { GuiPreferences.Instance.setLog("using final dataset: " + filenameTR3); data = WekaTrainingMethods.loadDataSetFile(filenameTR3); // no peeking (no trick) } //select 1000 IG values, serialize to file WekaTrainingMethods.selectIGSerialize(ref data); //load tr3 data = WekaTrainingMethods.loadDataSetFile(filenameTR3); //filter top IG data = WekaTrainingMethods.useRemoveFilter(data, Preferences.Instance.attsel.selectedAttributes(), true); //save filtered tr3 to a file WekaCommonFileOperation.SaveArff(data, GuiPreferences.Instance.WorkDirectory + filenameTR3 + "_filteredIG.arff"); WekaCommonFileOperation.SaveCSV(data, GuiPreferences.Instance.WorkDirectory + filenameTR3 + "_filteredIG_CSV.arff"); return(data); }
//converts TR-based files from a directory to Arff public static void ConvertToArff(string CsharpDirectory) { for (decimal i = GuiPreferences.Instance.NudExtractFromTR; i <= GuiPreferences.Instance.NudExtractToTR; i++) { //convert libsvm tr file to arff if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(CsharpDirectory + "TrainSet_" + i.ToString() + "th_vectors_scaledCS.libsvm", 204800)) { GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_" + i.ToString() + "th_vectors_scaledCS.libsvm"); } } }
/// <summary> /// saves ProblemOriginal to a file, separates into tr3 and tr4, normalizes, and converts the libsvm files into arff. /// </summary> public static void VectorizeAndNormalize(libSVM_ExtendedProblem problem) { string trainFileName = GuiPreferences.Instance.WorkDirectory /*+ GuiPreferences.Instance.FileName*/ + "TrainSet"; //todo add proper named to saved files, check if null is logical at all. //if ((Preferences.Instance.ProblemOriginal.samples != null)) //{ problem.Save(trainFileName + ".libsvm", 80 * 80 * 32 + 1); GuiPreferences.Instance.setLog("saved Original Problem LibSVM file: " + trainFileName + ".libsvm"); //} //separate DS to 3rd and 4th TR ////example: ExecuteSelectKthVectorScript(@"TrainSet", @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20120508.Rapid+NullClass.day2\4\rtp\"); KthExtractionManager.ExecuteSelectKthVectorScript(/*GuiPreferences.Instance.FileName +*/ "TrainSet", GuiPreferences.Instance.WorkDirectory); //GuiPreferences.Instance.setLog("Created TR3, TR4, TR5, TR6 files (5+6 depends if added to the python script)"); //NORMALIZING all TR Files NormalizationManager.ScaleTrFiles(GuiPreferences.Instance.WorkDirectory); //CONVERTING all TR files WekaCommonFileOperation.ConvertToArff(GuiPreferences.Instance.WorkDirectory); }
/// <summary> /// concatenates 3TR 4TR etc according to what is assigned in the gui. /// </summary> /// <param name="directoryList"></param> public static void ConcatenateLibsvmVectorizedPerTR(List <string> directoryList) { for (decimal i = GuiPreferences.Instance.NudExtractFromTR; i <= GuiPreferences.Instance.NudExtractToTR; i++) { FileStream fileStream; FileStream outputFileStream = new FileStream( GuiPreferences.Instance.WorkDirectory + "TrainSet_" + i.ToString() + "th_vectors_scaledCS.libsvm", FileMode.CreateNew, FileAccess.Write); foreach (string directory in directoryList) { fileStream = new FileStream(directory + "TrainSet_" + i.ToString() + "th_vectors_scaledCS.libsvm", FileMode.Open, FileAccess.Read); CopyStream(outputFileStream, fileStream); fileStream.Close(); } outputFileStream.Close(); //save concatenated tr to a file if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(GuiPreferences.Instance.WorkDirectory + "TrainSet_" + i.ToString() + "th_vectors_scaledCS.libsvm", 204800)) { GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_" + i.ToString() + "th_vectors_scaledCS.arff"); } } }
public static Instances WekaPipeline_Unprocessed(libSVM_ExtendedProblem _trialProblem) { //export to libsvm file if (_trialProblem.samples == null) { GuiPreferences.Instance.setLog("Export Failed: Problem has no samples!"); return(null); } string trainFileName = GuiPreferences.Instance.WorkDirectory /*+ GuiPreferences.Instance.FileName*/ + "TrainSet"; //todo add proper named to saved files, check if null is logical at all. if ((_trialProblem.samples != null)) { _trialProblem.Save(trainFileName + ".libsvm"); GuiPreferences.Instance.setLog("saved Original Problem LibSVM file: " + trainFileName + ".libsvm"); } //separate DS to 3rd and 4th TR ////example: ExecuteSelectKthVectorScript(@"TrainSet", @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20120508.Rapid+NullClass.day2\4\rtp\"); KthExtractionManager.ExecuteSelectKthVectorScript(/*GuiPreferences.Instance.FileName +*/ "TrainSet", GuiPreferences.Instance.WorkDirectory); GuiPreferences.Instance.setLog("Created TR3 & TR4 files"); //normalize 3rd and 4th TR files. NormalizationManager.ScaleTrFiles(GuiPreferences.Instance.WorkDirectory); GuiPreferences.Instance.setLog("Normalized TR3 & TR4 files"); //convert tr4 and tr3 to arff + REMOVE 204801 FAKE FEATURE, THAT WAS PLACES TO MAKE SURE WE GET 204800 FEATURES IN THE ARFF FILE. if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(GuiPreferences.Instance.WorkDirectory + "TrainSet_3th_vectors_scaledCS.libsvm", 204800)) { GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_3th_vectors_scaledCS.libsvm"); } if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(GuiPreferences.Instance.WorkDirectory + "TrainSet_4th_vectors_scaledCS.libsvm", 204800)) { GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_4th_vectors_scaledCS.libsvm"); } //---------------------------------- filter tr3 based on top 1000 from tr4 (the trick) ----------------------------- //load TR4 ConverterUtils.DataSource source = new ConverterUtils.DataSource(GuiPreferences.Instance.WorkDirectory + "TrainSet_4th_vectors_scaledCS.libsvm.arff"); Instances data = source.getDataSet(); //assign last as index. if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } //if class not nominal, convert to if (!data.classAttribute().isNominal()) { var filter = new weka.filters.unsupervised.attribute.NumericToNominal(); filter.setOptions(weka.core.Utils.splitOptions("-R last")); //filter.setAttributeIndices("last"); filter.setInputFormat(data); data = Filter.useFilter(data, filter); } //run ig and get top 1000 or up to 1000 bigger than zero, from tr4 WekaTrainingMethods.useLowLevelInformationGainFeatureSelection(data); TrainingTesting_SharedVariables._trainTopIGFeatures = Preferences.Instance.attsel.selectedAttributes(); //this should be done ONCE Preferences.Instance.fastvector = RealTimeProcessing.CreateFastVector(TrainingTesting_SharedVariables._trainTopIGFeatures.Length); GuiPreferences.Instance.setLog("created fast vector of length " + TrainingTesting_SharedVariables._trainTopIGFeatures.Length.ToString()); //serialize (save) topIG indices to file. XMLSerializer.serializeArrayToFile(GuiPreferences.Instance.WorkDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS_filteredIG_indices.xml", TrainingTesting_SharedVariables._trainTopIGFeatures); GuiPreferences.Instance.setLog("saved IG indices to a file (in the same order as IG gave it)"); //int [] _trainTopIGFeatures_loaded = DeserializeArrayToFile(GuiPreferences.Instance.WorkDirectory + "TrainSet_3th_vectors_scaledCS_filteredIG_indices.xml"); GuiPreferences.Instance.setLog(TrainingTesting_SharedVariables._trainTopIGFeatures.Length.ToString() + " features above zero value selected (including the Class feature)"); //load tr3 source = new ConverterUtils.DataSource(GuiPreferences.Instance.WorkDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.libsvm.arff"); data = source.getDataSet(); //filter top IG data = WekaTrainingMethods.useRemoveFilter(data, TrainingTesting_SharedVariables._trainTopIGFeatures, true); //after filtering last feature needs to be the class if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } //save filtered to a file WekaCommonFileOperation.SaveLIBSVM(data, GuiPreferences.Instance.WorkDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS_filteredIG"); return(data); }
/// <summary> /// tests if iron python works. /// </summary> public void TestIronPython() { /*IronPythonCLS ir = new IronPythonCLS(); * var res = ir.ExecuteBusinessRules(); * GuiPreferences.Instance.setLog(res.ToString());*/ //ExecuteSelectKthVectorScript(); string CsharpFileName = @"TrainSet"; string CsharpDirectory = @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20120508.Rapid+NullClass.day2\4\rtp\"; /*ExecuteSelectKthVectorScript(CsharpFileName, CsharpDirectory); * svm_scale_java svmscale = new svm_scale_java(); * * string commandLine = "-l 0 " + * "-s " + CsharpDirectory + "TrainSet_3th_vectors_scale_paramcs.libsvm " + * "-o " + CsharpDirectory + "TrainSet_3th_vectors_scaledcs.libsvm " + * CsharpDirectory + "TrainSet_3th_vectors.libsvm"; * * string[] commandArray = commandLine.Split(' '); * svmscale.run(commandArray); * * commandLine = "-l 0 " + * "-s " + CsharpDirectory + "TrainSet_4th_vectors_scale_paramcs.libsvm " + * "-o " + CsharpDirectory + "TrainSet_4th_vectors_scaledcs.libsvm " + * CsharpDirectory + "TrainSet_4th_vectors.libsvm"; * commandArray = commandLine.Split(' '); * svmscale.run(commandArray);*/ ////////////////////////WekaCommon.Main(null); ////////////////////////var source = new ConverterUtils.DataSource(CsharpDirectory + "TrainSet_3th_vectors_scaledCS.libsvm"); //convert tr4 and tr3 to arff /*if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(CsharpDirectory + "TrainSet_3th_vectors_scaledCS.libsvm")) * GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_3th_vectors_scaledCS.libsvm"); * if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(CsharpDirectory + "TrainSet_4th_vectors_scaledCS.libsvm")) * GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_4th_vectors_scaledCS.libsvm");*/ //infogain on tr4 and get 1000 top features. ConverterUtils.DataSource source = new ConverterUtils.DataSource(CsharpDirectory + "TrainSet_4th_vectors_scaledCS.libsvm.arff"); Instances data = source.getDataSet(); if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } if (!data.classAttribute().isNominal()) { var filter = new weka.filters.unsupervised.attribute.NumericToNominal(); filter.setOptions(weka.core.Utils.splitOptions("-R last")); //filter.setAttributeIndices("last"); filter.setInputFormat(data); data = Filter.useFilter(data, filter); } int[] topIGFeatures = Preferences.Instance.attsel.selectedAttributes(); //load tr3 source = new ConverterUtils.DataSource(CsharpDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.libsvm.arff"); data = source.getDataSet(); int[] invertedTopIGFeatures = new int[data.numAttributes() - topIGFeatures.Length]; //alternative use of the filter, var dict = topIGFeatures.ToDictionary(key => key, value => value); int position = 0; for (int feat = 0; feat < data.numAttributes(); feat++) { if (!dict.ContainsKey(feat)) { invertedTopIGFeatures[position] = feat; position++; } } //filter top IG //data = WekaCommonMethods.useRemoveFilter(data, topIGFeatures, true); data = WekaTrainingMethods.useRemoveFilter(data, invertedTopIGFeatures, false); WekaCommonFileOperation.SaveArff(data, CsharpDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS_filteredIG2.libsvm1.arff"); //train /*weka.classifiers.functions.SMO smo = new SMO(); * smo.setOptions(weka.core.Utils.splitOptions(" -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0\"")); * if (data.classIndex() == -1) * data.setClassIndex(data.numAttributes() - 1); * * * * smo.buildClassifier(data); * * * //test on self should get 100% * weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(data); * eval.evaluateModel(smo, data); * GuiPreferences.Instance.setLog(eval.toSummaryString("\nResults\n======\n", false)); * * //save model serialize model * weka.core.SerializationHelper.write(CsharpDirectory + "TrainSet_3th_vectors_scaledCS_filteredIG.libsvm.arff.model", smo); * * //load model deserialize model * smo = (weka.classifiers.functions.SMO)weka.core.SerializationHelper.read(CsharpDirectory + "TrainSet_3th_vectors_scaledCS_filteredIG.libsvm.arff.model"); * * //test loaded model * eval = new weka.classifiers.Evaluation(data); * eval.evaluateModel(smo, data); * GuiPreferences.Instance.setLog(eval.toSummaryString("\nResults\n======\n", false));*/ //display top IG. //PublicMethods.plotBrainDicomViewer(); if (Preferences.Instance.attsel == null) { GuiPreferences.Instance.setLog("there are no ranked IG attributes or selected attr, continuing but please fix this possible bug."); } string dicomDir = CsharpDirectory; dicomDir = dicomDir.Substring(0, dicomDir.Length - 4) + @"master\"; string[] files = System.IO.Directory.GetFiles(dicomDir, "*.dcm"); string firstFile = files[0].Substring(files[0].LastIndexOf(@"\") + 1); bool thresholdOrVoxelAmount; if (GuiPreferences.Instance.IgSelectionType == IGType.Threshold) { thresholdOrVoxelAmount = true; } else { thresholdOrVoxelAmount = false; } Form plotForm = new DicomImageViewer.MainForm(dicomDir + firstFile, firstFile, Preferences.Instance.attsel.rankedAttributes(), Convert.ToDouble(GuiPreferences.Instance.NudIGThreshold), Convert.ToInt32(GuiPreferences.Instance.NudIGVoxelAmount), thresholdOrVoxelAmount, GuiPreferences.Instance.WorkDirectory + "brain"); plotForm.StartPosition = FormStartPosition.CenterParent; plotForm.ShowDialog(); plotForm.Close(); }
/// <summary> /// WAS A BIG BUTTON: quickloads a range of commands to test the weka pipeline /// loads protocol and data, processes for SMO, trick, IG, etc.. has java/python intergration /// 1. Trick: QuickLoad, Export to Libsvm, separate to TRs files in libsvm, convert TR-3 and TR-4 to arff, use TR4 + IG to get 1000 features, filter TR-3 based on features from TR-4, save result to libsvm format, train using LibSvm (grid?), save model, test on training data - must get 100%, display 1000 on viewport /// 2. No Trick: QuickLoad, Export to Libsvm, separate to TRs files in libsvm, convert TR-3 to arff, filter TR-3 based on 1000 top IG, save result to libsvm format, train using LibSvm (grid?), save model, test on training data - must get 100%, display 1000 on viewport /// </summary> /// <param name="from"></param> /// <returns></returns> public bool QuickProcessWekaPipeline(int from) { // --- from this point the loading data phaze begins --- // // tirosh null movement /* * GuiPreferences.Instance.WorkDirectory = @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20120508.Rapid+NullClass.day2\4\rtp\"; * GuiPreferences.Instance.FileName = "tirosh-"; * GuiPreferences.Instance.FileType = OriBrainLearnerCore.dataType.rawValue; * GuiPreferences.Instance.ProtocolFile = @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20120705.NullClass1_zbaseline.prt"; */ // magali classification /*GuiPreferences.Instance.WorkDirectory = @"H:\My_Dropbox\VERE\Experiment1\Kozin_Magali\20121231.movement.3.imagery.1\18-classification.movement\rtp\"; * GuiPreferences.Instance.FileName = "tirosh-"; * GuiPreferences.Instance.FileType = OriBrainLearnerCore.dataType.rawValue; * GuiPreferences.Instance.ProtocolFile = @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20113110.short.5th.exp.hands.legs.zscore.thought_LRF.prt"; * */ /// moshe sherf classification, 4 aggregated to test on 1. //GuiPreferences.Instance.WorkDirectory = @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\1234-5\"; //GuiPreferences.Instance.ProtocolFile = @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\1234-5\20113110.short.5th.exp.hands.legs.zscore.thought_LRF.prt"; string[] directoryList = { @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\05_classification\rtp\", @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\07_classification\rtp\", @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\09_classification\rtp\", @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\11_classification\rtp\" }; GuiPreferences.Instance.ProtocolFile = @"H:\My_Dropbox\VERE\MRI_data\Tirosh\20113110.short.5th.exp.hands.legs.zscore.thought_LRF.prt"; //GuiPreferences.Instance.WorkDirectory = @"H:\My_Dropbox\VERE\Experiment1\Sherf_Moshe\20121010.movement.1\15_classification\rtp\"; GuiPreferences.Instance.FileName = "tirosh-"; GuiPreferences.Instance.FileType = OriBrainLearnerCore.DataType.rawValue; //read prot file Preferences.Instance.prot = new ProtocolManager(); double[][] topIGFeatures = {}; foreach (string directory in directoryList) { GuiPreferences.Instance.WorkDirectory = directory; //delete all files that are going to be created, in order to prevent anomaly vectors. string[] deleteFiles = { "TrainSet.libsvm", "TrainSet_3th_vectors.libsvm", "TrainSet_3th_vectors_scale_paramCS.libsvm", "TrainSet_3th_vectors_scaledCS.libsvm", "TrainSet_3th_vectors_scaledCS.libsvm.arff", "TrainSet_3th_vectors_scaledCS_filteredIG.arff", "TrainSet_3th_vectors_scaledCS_filteredIG.model", "TrainSet_3th_vectors_scaledCS_filteredIG_indices.xml", "TrainSet_4th_vectors.libsvm", "TrainSet_4th_vectors_scale_paramCS.libsvm", "TrainSet_4th_vectors_scaledCS.libsvm", "TrainSet_4th_vectors_scaledCS.libsvm.arff" }; foreach (string fileName in deleteFiles) { FileDirectoryOperations.DeleteFile(GuiPreferences.Instance.WorkDirectory + fileName); } //get all files in the path with this extention GuiManager.getFilePaths("*.vdat"); //update certain info GuiManager.updateFilePaths(); //assigned after we know what to assign from the protocol //PublicMethods.setClassesLabels(); GuiPreferences.Instance.CmbClass1Selected = 1; //left GuiPreferences.Instance.CmbClass2Selected = 2; //right //NEED TO ADD A VARIABLE FOR EVERY OPTION IN THE GUI. RAW VALUES. UNPROCESSED. MULTI CLASS. CROSS VALD, GRID, FOLDS, ETC... //and for every button a function! //for the training set GuiPreferences.Instance.FromTR = from; // 264; //for the test set //GuiPreferences.Instance.FromTR = 46; //GuiPreferences.Instance.ToTR = 100;// 264; //finally load TrainingTesting_SharedVariables.binary.loadRawData(); topIGFeatures = new double[][] {}; Instances data; //files are loaded,thresholded,vectorized,normalized. false means that IG and training are not done here. if (!Training_MultiRunProcessing.ProcessSingleRunOffline(ref topIGFeatures, Preferences.Instance.ProblemOriginal)) { GuiPreferences.Instance.setLog("Samples are empty"); } //++grab findl vectors and concat them // grab min max values for saving the median. } //create a dir that holds the final DS in C:\ GuiPreferences.Instance.WorkDirectory = @"C:\FinalData_" + DateTime.Now.ToLongTimeString().Replace(':', '-'); GuiPreferences.Instance.setLog(@"Creating Final Directory in: " + GuiPreferences.Instance.WorkDirectory); FileDirectoryOperations.CreateDirectory(GuiPreferences.Instance.WorkDirectory); GuiPreferences.Instance.WorkDirectory += @"\"; //concatenate libsvm normalized and vectorized files FileStream fileStream; FileStream outputFileStream = new FileStream(GuiPreferences.Instance.WorkDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.libsvm", FileMode.CreateNew, FileAccess.Write); foreach (string directory in directoryList) { fileStream = new FileStream(directory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.libsvm", FileMode.Open, FileAccess.Read); Training_MultiRunProcessing.CopyStream(outputFileStream, fileStream); fileStream.Close(); } outputFileStream.Close(); //save concatenated tr3 to a file if (WekaCommonFileOperation.ConvertLIBSVM2ARFF(GuiPreferences.Instance.WorkDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.libsvm", 204800)) { GuiPreferences.Instance.setLog("Converted to ARFF: TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.arff"); } double[][] feature_max = new double[directoryList.Length][]; double[][] feature_min = new double[directoryList.Length][]; int i = 0; int max_index = -1; foreach (string directory in directoryList) { TrainingTesting_SharedVariables._svmscaleTraining.getConfigFileMinMaxValues( directory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scale_paramCS.libsvm", ref feature_max[i], ref feature_min[i], ref max_index); i++; } //calculate Mean + save new min/max param to C:\ double[] finalFeature_max = new double[feature_max[0].Length]; double[] finalFeature_min = new double[feature_max[0].Length]; //create a list with enough values for the runs, in order to calculate the median var values_max = new List <double>(feature_max.Length); var values_min = new List <double>(feature_max.Length); for (int k = 0; k < feature_max.Length; k++) { //init zeros values_max.Add(0); values_min.Add(0); } for (int j = 0; j < feature_max[0].Length; j++) { for (int k = 0; k < feature_max.Length; k++) { values_max[k] = feature_max[k][j]; values_min[k] = feature_min[k][j]; } //finalFeature_max[j] = GetMedian(values_max); //finalFeature_min[j] = GetMedian(values_min); finalFeature_max[j] = values_max.Max(); finalFeature_min[j] = values_min.Min(); } TrainingTesting_SharedVariables._svmscaleTraining.saveConfigMinMax_CSharp(GuiPreferences.Instance.WorkDirectory + "TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scale_paramCS.libsvm", finalFeature_min, finalFeature_max, 204801, 0.0f, 1.0f); //todo check max index in file, //todo check if needs to remove 204801 from it so it doesnt effect the class. double[][] FinaltopIGFeatures = { }; Instances finalData = Training_MultiRunProcessing.ConcatenationPipeLine("TrainSet_" + GuiPreferences.Instance.NudClassifyUsingTR.ToString() + "th_vectors_scaledCS.libsvm.arff", "TrainSet_4th_vectors_scaledCS.libsvm.arff"); WekaTrainingMethods.TrainSMO(finalData); //save median param file //display top IG on dicom view string dicomDir = directoryList[0]; dicomDir = dicomDir.Substring(0, dicomDir.Length - 4) + @"master\"; string[] files = System.IO.Directory.GetFiles(dicomDir, "*.dcm"); string firstFile = files[0].Substring(files[0].LastIndexOf(@"\") + 1); bool thresholdOrVoxelAmount; if (GuiPreferences.Instance.IgSelectionType == IGType.Threshold) { thresholdOrVoxelAmount = true; } else { thresholdOrVoxelAmount = false; } //NOTE final top may be empty, please remember that the IG are not at preferences.instance.attsel.selectedattributes or rankedattributes. Form plotForm = new DicomImageViewer.MainForm(dicomDir + firstFile, firstFile, FinaltopIGFeatures, Convert.ToDouble(GuiPreferences.Instance.NudIGThreshold), Convert.ToInt32(GuiPreferences.Instance.NudIGVoxelAmount), thresholdOrVoxelAmount, GuiPreferences.Instance.WorkDirectory + "brain"); plotForm.StartPosition = FormStartPosition.CenterParent; plotForm.ShowDialog(); plotForm.Close(); return(true); }