コード例 #1
0
        /// <summary>
        /// 認識処理を行う
        /// </summary>
        /// <param name="imagePath">認識対象の画像パス</param>
        /// <param name="isDebug">デバッグモード</param>
        /// <returns></returns>
        public static String Recognize(String imagePath, bool isDebug = false)
        {
            List<String> results = new List<string>();

            // 検出対象の画像を読み込み
            IplImage src = new IplImage(imagePath, LoadMode.GrayScale);

            using (IplImage tmpImage = new IplImage(src.Size, BitDepth.U8, 1))
            {
                // 1)検出前処理

                // エッジ強調
                src.UnsharpMasking(src, 3);

                // 大津の手法による二値化処理
                // 大津, "判別および最小2乗基準に基づく自動しきい値選定法", 電子通信学会論文誌, Vol.J63-D, No.4, pp.349-356, 1980.
                src.Threshold(tmpImage, 200, 250, ThresholdType.Otsu);

                src.Dispose();

                Dictionary<int, List<double>> shapeMatchResults = new Dictionary<int, List<double>>();

                List<string> answerFileNames = washTagDictionary.Keys.ToList();
                foreach (var answerFileName in answerFileNames)
                {
                    var washTagInfo = washTagDictionary[answerFileName];
                    var answerImagePath = String.Format(@"answer\{0}.png", answerFileName);

                    // 2) 検出処理
                    var resultSURF = SURF(tmpImage, answerImagePath, isDebug);

                    // 3) 検出候補の評価
                    string result = null;

                    // その1:頂点がある場合
                    if (resultSURF.dstCorners != null)
                    {
                        // TODO:平面評価
                        //result = fileBaseName + " : " + washTagDictionary[fileBaseName];
                    }

                    // その2:形状マッチング
                    if (result == null && resultSURF.findPointList.Count > 0)
                    {
                        // ROIの1辺は、横に4つ位入る大きさで(何となくw)
                        CvSize roiSize = new CvSize(tmpImage.Width / 4, tmpImage.Width / 4);

                        List<double> matchResults = new List<double>();
                        foreach (var findPoint in resultSURF.findPointList)
                        {
                            // ROIを設定
                            tmpImage.SetROI(
                                (int)findPoint.Pt.X - roiSize.Width / 2,
                                (int)findPoint.Pt.Y - roiSize.Height / 2,
                                roiSize.Width, roiSize.Height
                            );
                            // Huモーメントによる形状マッチング [回転・スケーリング・反転に強い]
                            matchResults.Add(
                                CompareShapeMoment(tmpImage, answerImagePath, MatchShapesMethod.I1)
                            );
                            // ROIをリセット
                            tmpImage.ResetROI();
                        }

                        // 閾値以下だった場合に検出と見なす
                        if (matchResults.Min() < 0.005)
                        {
                            // カテゴリに値が無ければ確保
                            if (shapeMatchResults.ContainsKey(washTagInfo.CategoryNo) == false)
                            {
                                shapeMatchResults.Add(washTagInfo.CategoryNo, new List<double>());
                            }

                            shapeMatchResults[washTagInfo.CategoryNo].Add(matchResults.Min());
                        }
                    }
                }

                // 4)認識結果の整理
                foreach (var categoryNo in shapeMatchResults.Keys)
                {
                    var matchResult = shapeMatchResults[categoryNo];

                    var min = matchResult.Min();
                    var index = matchResult.FindIndex((x) =>
                    {
                        return x == min;
                    });

                    var id = String.Format("{0:0}{1:00}", categoryNo, index + 1);
                    var recognitionWashTag = washTagDictionary[id];

                    // 結果を格納
                    results.Add(
                        String.Format(isDebug ? "{0} : {1} ({2})" : "{0} : {1}", id, recognitionWashTag.Description, min)
                    );

                }

                // デバッグ表示
                if (isDebug)
                {
                    using (CvWindow win = new CvWindow("image", tmpImage))
                    {
                        CvWindow.WaitKey();
                    }
                }
            }

            return results.Count > 0
                ? String.Join("\n", results.ToArray())
                : "検出する事が出来ませんでした。";
        }