public override int nClasses() { return(_ds.nClasses()); }
public void InitData(IDataset ds, int nhidden, Intarray newc2i = null, Intarray newi2c = null) { CHECK_ARG(nhidden > 1 && nhidden < 1000000, "nhidden > 1 && nhidden < 1000000"); int ninput = ds.nFeatures(); int noutput = ds.nClasses(); w1.Resize(nhidden, ninput); b1.Resize(nhidden); w2.Resize(noutput, nhidden); b2.Resize(noutput); Intarray indexes = new Intarray(); NarrayUtil.RPermutation(indexes, ds.nSamples()); Floatarray v = new Floatarray(); for (int i = 0; i < w1.Dim(0); i++) { int row = indexes[i]; ds.Input1d(v, row); float normv = (float)NarrayUtil.Norm2(v); v /= normv * normv; NarrayRowUtil.RowPut(w1, i, v); } ClassifierUtil.fill_random(b1, -1e-6f, 1e-6f); ClassifierUtil.fill_random(w2, -1.0f / nhidden, 1.0f / nhidden); ClassifierUtil.fill_random(b2, -1e-6f, 1e-6f); if (newc2i != null) c2i.Copy(newc2i); if (newi2c != null) i2c.Copy(newi2c); }
public override void TrainDense(IDataset ds) { int nclasses = ds.nClasses(); float miters = PGetf("miters"); int niters = (int)(ds.nSamples() * miters); niters = Math.Max(1000, Math.Min(10000000,niters)); double err = 0.0; Floatarray x = new Floatarray(); Floatarray z = new Floatarray(); Floatarray target = new Floatarray(nclasses); int count = 0; for (int i = 0; i < niters; i++) { int row = i % ds.nSamples(); ds.Output(target, row); ds.Input1d(x, row); TrainOne(z, target, x, PGetf("eta")); err += NarrayUtil.Dist2Squared(z, target); count++; } err /= count; Global.Debugf("info", " {4} n {0} niters={1} eta={2:0.#####} errors={3:0.########}", ds.nSamples(), niters, PGetf("eta"), err, FullName); }
public virtual void TrainBatch(IDataset ds, IDataset ts) { Stopwatch sw = Stopwatch.StartNew(); bool parallel = PGetb("parallel"); float eta_init = PGetf("eta_init"); // 0.5 float eta_varlog = PGetf("eta_varlog"); // 1.5 float hidden_varlog = PGetf("hidden_varlog"); // 1.2 int hidden_lo = PGeti("hidden_lo"); int hidden_hi = PGeti("hidden_hi"); int rounds = PGeti("rounds"); int mlp_noopt = PGeti("noopt"); int hidden_min = PGeti("hidden_min"); int hidden_max = PGeti("hidden_max"); CHECK_ARG(hidden_min > 1 && hidden_max < 1000000, "hidden_min > 1 && hidden_max < 1000000"); CHECK_ARG(hidden_hi >= hidden_lo, "hidden_hi >= hidden_lo"); CHECK_ARG(hidden_max >= hidden_min, "hidden_max >= hidden_min"); CHECK_ARG(hidden_lo >= hidden_min && hidden_hi <= hidden_max, "hidden_lo >= hidden_min && hidden_hi <= hidden_max"); int nn = PGeti("nensemble"); ObjList<MlpClassifier> nets = new ObjList<MlpClassifier>(); nets.Resize(nn); for (int i = 0; i < nn; i++) nets[i] = new MlpClassifier(i); Floatarray errs = new Floatarray(nn); Floatarray etas = new Floatarray(nn); Intarray index = new Intarray(); float best = 1e30f; if (PExists("%error")) best = PGetf("%error"); int nclasses = ds.nClasses(); /*Floatarray v = new Floatarray(); for (int i = 0; i < ds.nSamples(); i++) { ds.Input1d(v, i); CHECK_ARG(NarrayUtil.Min(v) > -100 && NarrayUtil.Max(v) < 100, "min(v)>-100 && max(v)<100"); }*/ CHECK_ARG(ds.nSamples() >= 10 && ds.nSamples() < 100000000, "ds.nSamples() >= 10 && ds.nSamples() < 100000000"); for (int i = 0; i < nn; i++) { // nets(i).init(data.dim(1),logspace(i,nn,hidden_lo,hidden_hi),nclasses); if (w1.Length() > 0) { nets[i].Copy(this); etas[i] = ClassifierUtil.rLogNormal(eta_init, eta_varlog); } else { nets[i].InitData(ds, (int)(logspace(i, nn, hidden_lo, hidden_hi)), c2i, i2c); etas[i] = PGetf("eta"); } } etas[0] = PGetf("eta"); // zero position is identical to itself Global.Debugf("info", "mlp training n {0} nc {1}", ds.nSamples(), nclasses); for (int round = 0; round < rounds; round++) { Stopwatch swRound = Stopwatch.StartNew(); errs.Fill(-1); if (parallel) { // For each network i Parallel.For(0, nn, i => { nets[i].PSet("eta", etas[i]); nets[i].TrainDense(ds); // было XTrain errs[i] = ClassifierUtil.estimate_errors(nets[i], ts); }); } else { for (int i = 0; i < nn; i++) { nets[i].PSet("eta", etas[i]); nets[i].TrainDense(ds); // было XTrain errs[i] = ClassifierUtil.estimate_errors(nets[i], ts); //Global.Debugf("detail", "net({0}) {1} {2} {3}", i, // errs[i], nets[i].Complexity(), etas[i]); } } NarrayUtil.Quicksort(index, errs); if (errs[index[0]] < best) { best = errs[index[0]]; cv_error = best; this.Copy(nets[index[0]]); this.PSet("eta", etas[index[0]]); Global.Debugf("info", " best mlp[{0}] update errors={1} {2}", index[0], best, crossvalidate ? "cv" : ""); } if (mlp_noopt == 0) { for (int i = 0; i < nn / 2; i++) { int j = i + nn / 2; nets[index[j]].Copy(nets[index[i]]); int n = nets[index[j]].nHidden(); int nm = Math.Min(Math.Max(hidden_min, (int)(ClassifierUtil.rLogNormal(n, hidden_varlog))), hidden_max); nets[index[j]].ChangeHidden(nm); etas[index[j]] = ClassifierUtil.rLogNormal(etas[index[i]], eta_varlog); } } Global.Debugf("info", " end mlp round {0} err {1} nHidden {2}", round, best, nHidden()); swRound.Stop(); int totalTest= ts.nSamples(); int errCnt = Convert.ToInt32(best * totalTest); OnTrainRound(this, new TrainEventArgs( round, best, totalTest - errCnt, totalTest, best, swRound.Elapsed, TimeSpan.Zero )); } sw.Stop(); Global.Debugf("info", String.Format(" training time: {0} minutes, {1} seconds", (int)sw.Elapsed.TotalMinutes, sw.Elapsed.Seconds)); PSet("%error", best); int nsamples = ds.nSamples() * rounds; if (PExists("%nsamples")) nsamples += PGeti("%nsamples"); PSet("%nsamples", nsamples); }