public static void Main() { var assetsRelativePath = @"../../../assets"; string assetsPath = GetAbsolutePath(assetsRelativePath); var modelFilePath = Path.Combine(assetsPath, "Model", "TinyYolo2_model.onnx"); var imagesFolder = Path.Combine(assetsPath, "images"); var outputFolder = Path.Combine(assetsPath, "images", "output"); // Initialize MLContext MLContext mlContext = new MLContext(); try { // Load Data IEnumerable <ImageNetData> images = ImageNetData.ReadFromFile(imagesFolder); IDataView imageDataView = mlContext.Data.LoadFromEnumerable(images); // Create instance of model scorer var modelScorer = new OnnxModelScorer(imagesFolder, modelFilePath, mlContext); // Use model to score data IEnumerable <float[]> probabilities = modelScorer.Score(imageDataView); // Post-process model output YoloWinMlParser parser = new YoloWinMlParser(); var boundingBoxes = probabilities .Select(probability => parser.ParseOutputs(probability)) .Select(boxes => parser.FilterBoundingBoxes(boxes, 5, .5F)); // Draw bounding boxes for detected objects in each of the images for (var i = 0; i < images.Count(); i++) { string imageFileName = images.ElementAt(i).Label; IList <YoloBoundingBox> detectedObjects = boundingBoxes.ElementAt(i); DrawBoundingBox(imagesFolder, outputFolder, imageFileName, detectedObjects); LogDetectedObjects(imageFileName, detectedObjects); } } catch (Exception ex) { Console.WriteLine(ex.ToString()); } Console.WriteLine("========= End of Process..Hit any Key ========"); Console.ReadLine(); }