コード例 #1
0
        public void CalculateContactMassesA(ref NativeArray <float> invMasses,
                                            ref NativeArray <float4> prevPositions,
                                            ref NativeArray <quaternion> orientations,
                                            ref NativeArray <float4> inverseInertiaTensors, bool rollingContacts)
        {
            // initialize inverse linear masses:
            normalInvMassA = tangentInvMassA = bitangentInvMassA = invMasses[entityA];

            if (rollingContacts)
            {
                float4   rA             = ContactPointA - prevPositions[entityA];
                float4x4 solverInertiaA = BurstMath.TransformInertiaTensor(inverseInertiaTensors[entityA], orientations[entityA]);

                normalInvMassA    += BurstMath.RotationalInvMass(solverInertiaA, rA, normal);
                tangentInvMassA   += BurstMath.RotationalInvMass(solverInertiaA, rA, tangent);
                bitangentInvMassA += BurstMath.RotationalInvMass(solverInertiaA, rA, bitangent);
            }
        }
コード例 #2
0
        public void CalculateContactMassesA(float invMass,
                                            float4 inverseInertiaTensor,
                                            float4 position,
                                            quaternion orientation,
                                            float4 contactPoint,
                                            bool rollingContacts)
        {
            // initialize inverse linear masses:
            normalInvMassA = tangentInvMassA = bitangentInvMassA = invMass;

            if (rollingContacts)
            {
                float4   rA             = contactPoint - position;
                float4x4 solverInertiaA = BurstMath.TransformInertiaTensor(inverseInertiaTensor, orientation);

                normalInvMassA    += BurstMath.RotationalInvMass(solverInertiaA, rA, normal);
                tangentInvMassA   += BurstMath.RotationalInvMass(solverInertiaA, rA, tangent);
                bitangentInvMassA += BurstMath.RotationalInvMass(solverInertiaA, rA, bitangent);
            }
        }
コード例 #3
0
            public void Execute()
            {
                for (int i = 0; i < contacts.Length; ++i)
                {
                    var contact = contacts[i];

                    // Get the indices of the particle and collider involved in this contact:
                    int indexA = contact.entityA;
                    int indexB = contact.entityB;

                    // Skip contacts involving triggers:
                    if (shapes[indexB].flags > 0)
                    {
                        continue;
                    }

                    // Get the rigidbody index (might be < 0, in that case there's no rigidbody present)
                    int rigidbodyIndex = shapes[indexB].rigidbodyIndex;

                    // Combine collision materials:
                    BurstCollisionMaterial material = CombineCollisionMaterials(indexA, indexB);

                    // Calculate relative velocity:
                    float4 angularVelocityA = float4.zero, rA = float4.zero, rB = float4.zero;
                    float4 relativeVelocity = GetRelativeVelocity(indexA, rigidbodyIndex, ref contact, ref angularVelocityA, ref rA, ref rB, material.rollingContacts > 0);

                    // Determine impulse magnitude:
                    float2 impulses = contact.SolveFriction(relativeVelocity, material.staticFriction, material.dynamicFriction, dt);

                    if (math.abs(impulses.x) > BurstMath.epsilon || math.abs(impulses.y) > BurstMath.epsilon)
                    {
                        float4 tangentImpulse   = impulses.x * contact.tangent;
                        float4 bitangentImpulse = impulses.y * contact.bitangent;
                        float4 totalImpulse     = tangentImpulse + bitangentImpulse;

                        deltas[indexA] += (tangentImpulse * contact.tangentInvMassA + bitangentImpulse * contact.bitangentInvMassA) * dt;
                        counts[indexA]++;

                        if (rigidbodyIndex >= 0)
                        {
                            var rb = rigidbodies[rigidbodyIndex];

                            float4 worldImpulse = -inertialFrame.frame.TransformVector(totalImpulse);
                            float4 worldPoint   = inertialFrame.frame.TransformPoint(contact.point);

                            rigidbodyLinearDeltas[rigidbodyIndex]  += rb.inverseMass * worldImpulse;
                            rigidbodyAngularDeltas[rigidbodyIndex] += math.mul(rb.inverseInertiaTensor, new float4(math.cross((worldPoint - rb.com).xyz, worldImpulse.xyz), 0));
                        }

                        // Rolling contacts:
                        if (material.rollingContacts > 0)
                        {
                            // Calculate angular velocity deltas due to friction impulse:
                            float4x4 solverInertiaA = BurstMath.TransformInertiaTensor(invInertiaTensors[indexA], orientations[indexA]);

                            float4 angVelDeltaA = math.mul(solverInertiaA, new float4(math.cross(rA.xyz, totalImpulse.xyz), 0));
                            float4 angVelDeltaB = float4.zero;

                            // Final angular velocities, after adding the deltas:
                            angularVelocityA += angVelDeltaA;
                            float4 angularVelocityB = float4.zero;

                            // Calculate weights (inverse masses):
                            float invMassA = math.length(math.mul(solverInertiaA, math.normalizesafe(angularVelocityA)));
                            float invMassB = 0;

                            if (rigidbodyIndex >= 0)
                            {
                                angVelDeltaB     = math.mul(-rigidbodies[rigidbodyIndex].inverseInertiaTensor, new float4(math.cross(rB.xyz, totalImpulse.xyz), 0));
                                angularVelocityB = rigidbodies[rigidbodyIndex].angularVelocity + angVelDeltaB;
                                invMassB         = math.length(math.mul(rigidbodies[rigidbodyIndex].inverseInertiaTensor, math.normalizesafe(angularVelocityB)));
                            }

                            // Calculate rolling axis and angular velocity deltas:
                            float4 rollAxis       = float4.zero;
                            float  rollingImpulse = contact.SolveRollingFriction(angularVelocityA, angularVelocityB, material.rollingFriction, invMassA, invMassB, ref rollAxis);
                            angVelDeltaA += rollAxis * rollingImpulse * invMassA;
                            angVelDeltaB -= rollAxis * rollingImpulse * invMassB;

                            // Apply orientation delta to particle:
                            quaternion orientationDelta = BurstIntegration.AngularVelocityToSpinQuaternion(orientations[indexA], angVelDeltaA);

                            quaternion qA = orientationDeltas[indexA];
                            qA.value += orientationDelta.value * dt;
                            orientationDeltas[indexA] = qA;
                            orientationCounts[indexA]++;

                            // Apply angular velocity delta to rigidbody:
                            if (rigidbodyIndex >= 0)
                            {
                                float4 angularDelta = rigidbodyAngularDeltas[rigidbodyIndex];
                                angularDelta += angVelDeltaB;
                                rigidbodyAngularDeltas[rigidbodyIndex] = angularDelta;
                            }
                        }
                    }

                    contacts[i] = contact;
                }
            }
コード例 #4
0
            public void Execute(int workItemIndex)
            {
                int start, end;

                batchData.GetConstraintRange(workItemIndex, out start, out end);

                for (int i = start; i < end; ++i)
                {
                    var contact = contacts[i];

                    int simplexStartA = simplexCounts.GetSimplexStartAndSize(contact.bodyA, out int simplexSizeA);
                    int simplexStartB = simplexCounts.GetSimplexStartAndSize(contact.bodyB, out int simplexSizeB);

                    // Combine collision materials:
                    BurstCollisionMaterial material = CombineCollisionMaterials(simplices[simplexStartA], simplices[simplexStartB]);

                    float4     prevPositionA     = float4.zero;
                    float4     linearVelocityA   = float4.zero;
                    float4     angularVelocityA  = float4.zero;
                    float4     invInertiaTensorA = float4.zero;
                    quaternion orientationA      = new quaternion(0, 0, 0, 0);
                    float      simplexRadiusA    = 0;

                    float4     prevPositionB     = float4.zero;
                    float4     linearVelocityB   = float4.zero;
                    float4     angularVelocityB  = float4.zero;
                    float4     invInertiaTensorB = float4.zero;
                    quaternion orientationB      = new quaternion(0, 0, 0, 0);
                    float      simplexRadiusB    = 0;

                    for (int j = 0; j < simplexSizeA; ++j)
                    {
                        int particleIndex = simplices[simplexStartA + j];
                        prevPositionA      += prevPositions[particleIndex] * contact.pointA[j];
                        linearVelocityA    += BurstIntegration.DifferentiateLinear(positions[particleIndex], prevPositions[particleIndex], substepTime) * contact.pointA[j];
                        angularVelocityA   += BurstIntegration.DifferentiateAngular(orientations[particleIndex], prevOrientations[particleIndex], substepTime) * contact.pointA[j];
                        invInertiaTensorA  += invInertiaTensors[particleIndex] * contact.pointA[j];
                        orientationA.value += orientations[particleIndex].value * contact.pointA[j];
                        simplexRadiusA     += BurstMath.EllipsoidRadius(contact.normal, prevOrientations[particleIndex], radii[particleIndex].xyz) * contact.pointA[j];
                    }
                    for (int j = 0; j < simplexSizeB; ++j)
                    {
                        int particleIndex = simplices[simplexStartB + j];
                        prevPositionB      += prevPositions[particleIndex] * contact.pointB[j];
                        linearVelocityB    += BurstIntegration.DifferentiateLinear(positions[particleIndex], prevPositions[particleIndex], substepTime) * contact.pointB[j];
                        angularVelocityB   += BurstIntegration.DifferentiateAngular(orientations[particleIndex], prevOrientations[particleIndex], substepTime) * contact.pointB[j];
                        invInertiaTensorB  += invInertiaTensors[particleIndex] * contact.pointB[j];
                        orientationB.value += orientations[particleIndex].value * contact.pointB[j];
                        simplexRadiusB     += BurstMath.EllipsoidRadius(contact.normal, prevOrientations[particleIndex], radii[particleIndex].xyz) * contact.pointB[j];
                    }

                    float4 rA = float4.zero, rB = float4.zero;

                    // Consider angular velocities if rolling contacts are enabled:
                    if (material.rollingContacts > 0)
                    {
                        rA = -contact.normal * simplexRadiusA;
                        rB = contact.normal * simplexRadiusB;

                        linearVelocityA += new float4(math.cross(angularVelocityA.xyz, rA.xyz), 0);
                        linearVelocityB += new float4(math.cross(angularVelocityB.xyz, rB.xyz), 0);
                    }

                    // Calculate relative velocity:
                    float4 relativeVelocity = linearVelocityA - linearVelocityB;

                    // Calculate friction impulses (in the tangent and bitangent ddirections):
                    float2 impulses         = contact.SolveFriction(relativeVelocity, material.staticFriction, material.dynamicFriction, substepTime);

                    // Apply friction impulses to both particles:
                    if (math.abs(impulses.x) > BurstMath.epsilon || math.abs(impulses.y) > BurstMath.epsilon)
                    {
                        float4 tangentImpulse   = impulses.x * contact.tangent;
                        float4 bitangentImpulse = impulses.y * contact.bitangent;
                        float4 totalImpulse     = tangentImpulse + bitangentImpulse;

                        float baryScale = BurstMath.BaryScale(contact.pointA);
                        for (int j = 0; j < simplexSizeA; ++j)
                        {
                            int particleIndex = simplices[simplexStartA + j];
                            deltas[particleIndex] += (tangentImpulse * contact.tangentInvMassA + bitangentImpulse * contact.bitangentInvMassA) * substepTime * contact.pointA[j] * baryScale;
                            counts[particleIndex]++;
                        }

                        baryScale = BurstMath.BaryScale(contact.pointB);
                        for (int j = 0; j < simplexSizeB; ++j)
                        {
                            int particleIndex = simplices[simplexStartB + j];
                            deltas[particleIndex] -= (tangentImpulse * contact.tangentInvMassB + bitangentImpulse * contact.bitangentInvMassB) * substepTime * contact.pointB[j] * baryScale;
                            counts[particleIndex]++;
                        }

                        // Rolling contacts:
                        if (material.rollingContacts > 0)
                        {
                            // Calculate angular velocity deltas due to friction impulse:
                            float4x4 solverInertiaA = BurstMath.TransformInertiaTensor(invInertiaTensorA, orientationA);
                            float4x4 solverInertiaB = BurstMath.TransformInertiaTensor(invInertiaTensorB, orientationB);

                            float4 angVelDeltaA = math.mul(solverInertiaA, new float4(math.cross(rA.xyz, totalImpulse.xyz), 0));
                            float4 angVelDeltaB = -math.mul(solverInertiaB, new float4(math.cross(rB.xyz, totalImpulse.xyz), 0));

                            // Final angular velocities, after adding the deltas:
                            angularVelocityA += angVelDeltaA;
                            angularVelocityB += angVelDeltaB;

                            // Calculate weights (inverse masses):
                            float invMassA = math.length(math.mul(solverInertiaA, math.normalizesafe(angularVelocityA)));
                            float invMassB = math.length(math.mul(solverInertiaB, math.normalizesafe(angularVelocityB)));

                            // Calculate rolling axis and angular velocity deltas:
                            float4 rollAxis       = float4.zero;
                            float  rollingImpulse = contact.SolveRollingFriction(angularVelocityA, angularVelocityB, material.rollingFriction, invMassA, invMassB, ref rollAxis);
                            angVelDeltaA += rollAxis * rollingImpulse * invMassA;
                            angVelDeltaB -= rollAxis * rollingImpulse * invMassB;

                            // Apply orientation deltas to particles:
                            quaternion orientationDeltaA = BurstIntegration.AngularVelocityToSpinQuaternion(orientationA, angVelDeltaA, substepTime);
                            quaternion orientationDeltaB = BurstIntegration.AngularVelocityToSpinQuaternion(orientationB, angVelDeltaB, substepTime);

                            for (int j = 0; j < simplexSizeA; ++j)
                            {
                                int        particleIndex = simplices[simplexStartA + j];
                                quaternion qA            = orientationDeltas[particleIndex];
                                qA.value += orientationDeltaA.value;
                                orientationDeltas[particleIndex] = qA;
                                orientationCounts[particleIndex]++;
                            }

                            for (int j = 0; j < simplexSizeB; ++j)
                            {
                                int        particleIndex = simplices[simplexStartB + j];
                                quaternion qB            = orientationDeltas[particleIndex];
                                qB.value += orientationDeltaB.value;
                                orientationDeltas[particleIndex] = qB;
                                orientationCounts[particleIndex]++;
                            }
                        }
                    }

                    contacts[i] = contact;
                }
            }
コード例 #5
0
            public void Execute(int workItemIndex)
            {
                int start, end;

                batchData.GetConstraintRange(workItemIndex, out start, out end);

                for (int i = start; i < end; ++i)
                {
                    var contact = contacts[i];

                    int indexA = contact.entityA;
                    int indexB = contact.entityB;

                    // Combine collision materials:
                    BurstCollisionMaterial material = CombineCollisionMaterials(contact.entityA, contact.entityB);

                    // Calculate relative velocity:
                    float4 angularVelocityA = float4.zero, angularVelocityB = float4.zero, rA = float4.zero, rB = float4.zero;
                    float4 relativeVelocity = GetRelativeVelocity(indexA, indexB, ref contact, ref angularVelocityA, ref angularVelocityB, ref rA, ref rB, material.rollingContacts > 0);

                    // Calculate friction impulses (in the tangent and bitangent ddirections):
                    float2 impulses = contact.SolveFriction(relativeVelocity, material.staticFriction, material.dynamicFriction, dt);

                    // Apply friction impulses to both particles:
                    if (math.abs(impulses.x) > BurstMath.epsilon || math.abs(impulses.y) > BurstMath.epsilon)
                    {
                        float4 tangentImpulse   = impulses.x * contact.tangent;
                        float4 bitangentImpulse = impulses.y * contact.bitangent;
                        float4 totalImpulse     = tangentImpulse + bitangentImpulse;

                        deltas[indexA] += (tangentImpulse * contact.tangentInvMassA + bitangentImpulse * contact.bitangentInvMassA) * dt;
                        deltas[indexB] -= (tangentImpulse * contact.tangentInvMassB + bitangentImpulse * contact.bitangentInvMassB) * dt;
                        counts[indexA]++;
                        counts[indexB]++;

                        // Rolling contacts:
                        if (material.rollingContacts > 0)
                        {
                            // Calculate angular velocity deltas due to friction impulse:
                            float4x4 solverInertiaA = BurstMath.TransformInertiaTensor(invInertiaTensors[indexA], orientations[indexA]);
                            float4x4 solverInertiaB = BurstMath.TransformInertiaTensor(invInertiaTensors[indexB], orientations[indexB]);

                            float4 angVelDeltaA = math.mul(solverInertiaA, new float4(math.cross(rA.xyz, totalImpulse.xyz), 0));
                            float4 angVelDeltaB = -math.mul(solverInertiaB, new float4(math.cross(rB.xyz, totalImpulse.xyz), 0));

                            // Final angular velocities, after adding the deltas:
                            angularVelocityA += angVelDeltaA;
                            angularVelocityB += angVelDeltaB;

                            // Calculate weights (inverse masses):
                            float invMassA = math.length(math.mul(solverInertiaA, math.normalizesafe(angularVelocityA)));
                            float invMassB = math.length(math.mul(solverInertiaB, math.normalizesafe(angularVelocityB)));

                            // Calculate rolling axis and angular velocity deltas:
                            float4 rollAxis       = float4.zero;
                            float  rollingImpulse = contact.SolveRollingFriction(angularVelocityA, angularVelocityB, material.rollingFriction, invMassA, invMassB, ref rollAxis);
                            angVelDeltaA += rollAxis * rollingImpulse * invMassA;
                            angVelDeltaB -= rollAxis * rollingImpulse * invMassB;

                            // Apply orientation deltas to particles:
                            quaternion orientationDeltaA = BurstIntegration.AngularVelocityToSpinQuaternion(orientations[indexA], angVelDeltaA);
                            quaternion orientationDeltaB = BurstIntegration.AngularVelocityToSpinQuaternion(orientations[indexB], angVelDeltaB);

                            quaternion qA = orientationDeltas[indexA];
                            qA.value += orientationDeltaA.value * dt;
                            orientationDeltas[indexA] = qA;
                            orientationCounts[indexA]++;

                            quaternion qB = orientationDeltas[indexB];
                            qB.value += orientationDeltaB.value * dt;
                            orientationDeltas[indexB] = qB;
                            orientationCounts[indexB]++;
                        }
                    }

                    contacts[i] = contact;
                }
            }
コード例 #6
0
            public void Execute()
            {
                for (int i = 0; i < contacts.Length; ++i)
                {
                    var contact = contacts[i];

                    // Get the indices of the particle and collider involved in this contact:
                    int simplexStart  = simplexCounts.GetSimplexStartAndSize(contact.bodyA, out int simplexSize);
                    int colliderIndex = contact.bodyB;

                    // Skip contacts involving triggers:
                    if (shapes[colliderIndex].flags > 0)
                    {
                        continue;
                    }

                    // Get the rigidbody index (might be < 0, in that case there's no rigidbody present)
                    int rigidbodyIndex = shapes[colliderIndex].rigidbodyIndex;

                    // Combine collision materials (use material from first particle in simplex)
                    BurstCollisionMaterial material = CombineCollisionMaterials(simplices[simplexStart], colliderIndex);

                    // Calculate relative velocity:
                    float4 rA = float4.zero, rB = float4.zero;

                    float4     prevPositionA     = float4.zero;
                    float4     linearVelocityA   = float4.zero;
                    float4     angularVelocityA  = float4.zero;
                    float4     invInertiaTensorA = float4.zero;
                    quaternion orientationA      = new quaternion(0, 0, 0, 0);
                    float      simplexRadiusA    = 0;

                    for (int j = 0; j < simplexSize; ++j)
                    {
                        int particleIndex = simplices[simplexStart + j];
                        prevPositionA      += prevPositions[particleIndex] * contact.pointA[j];
                        linearVelocityA    += BurstIntegration.DifferentiateLinear(positions[particleIndex], prevPositions[particleIndex], substepTime) * contact.pointA[j];
                        angularVelocityA   += BurstIntegration.DifferentiateAngular(orientations[particleIndex], prevOrientations[particleIndex], substepTime) * contact.pointA[j];
                        invInertiaTensorA  += invInertiaTensors[particleIndex] * contact.pointA[j];
                        orientationA.value += orientations[particleIndex].value * contact.pointA[j];
                        simplexRadiusA     += BurstMath.EllipsoidRadius(contact.normal, prevOrientations[particleIndex], radii[particleIndex].xyz) * contact.pointA[j];
                    }

                    float4 relativeVelocity      = linearVelocityA;

                    // Add particle angular velocity if rolling contacts are enabled:
                    if (material.rollingContacts > 0)
                    {
                        rA = -contact.normal * simplexRadiusA;
                        relativeVelocity += new float4(math.cross(angularVelocityA.xyz, rA.xyz), 0);
                    }

                    // Subtract rigidbody velocity:
                    if (rigidbodyIndex >= 0)
                    {
                        // Note: unlike rA, that is expressed in solver space, rB is expressed in world space.
                        rB = inertialFrame.frame.TransformPoint(contact.pointB) - rigidbodies[rigidbodyIndex].com;
                        relativeVelocity -= BurstMath.GetRigidbodyVelocityAtPoint(rigidbodyIndex, contact.pointB, rigidbodies, rigidbodyLinearDeltas, rigidbodyAngularDeltas, inertialFrame.frame);
                    }

                    // Determine impulse magnitude:
                    float2 impulses              = contact.SolveFriction(relativeVelocity, material.staticFriction, material.dynamicFriction, stepTime);

                    if (math.abs(impulses.x) > BurstMath.epsilon || math.abs(impulses.y) > BurstMath.epsilon)
                    {
                        float4 tangentImpulse   = impulses.x * contact.tangent;
                        float4 bitangentImpulse = impulses.y * contact.bitangent;
                        float4 totalImpulse     = tangentImpulse + bitangentImpulse;

                        float baryScale = BurstMath.BaryScale(contact.pointA);
                        for (int j = 0; j < simplexSize; ++j)
                        {
                            int particleIndex = simplices[simplexStart + j];
                            //(tangentImpulse * contact.tangentInvMassA + bitangentImpulse * contact.bitangentInvMassA) * dt;
                            deltas[particleIndex] += (tangentImpulse * contact.tangentInvMassA + bitangentImpulse * contact.bitangentInvMassA) * substepTime * contact.pointA[j] * baryScale;
                            counts[particleIndex]++;
                        }

                        if (rigidbodyIndex >= 0)
                        {
                            BurstMath.ApplyImpulse(rigidbodyIndex, -totalImpulse, contact.pointB, rigidbodies, rigidbodyLinearDeltas, rigidbodyAngularDeltas, inertialFrame.frame);
                        }

                        // Rolling contacts:
                        if (material.rollingContacts > 0)
                        {
                            // Calculate angular velocity deltas due to friction impulse:
                            float4x4 solverInertiaA = BurstMath.TransformInertiaTensor(invInertiaTensorA, orientationA);

                            float4 angVelDeltaA = math.mul(solverInertiaA, new float4(math.cross(rA.xyz, totalImpulse.xyz), 0));
                            float4 angVelDeltaB = float4.zero;

                            // Final angular velocities, after adding the deltas:
                            angularVelocityA += angVelDeltaA;
                            float4 angularVelocityB = float4.zero;

                            // Calculate weights (inverse masses):
                            float invMassA = math.length(math.mul(solverInertiaA, math.normalizesafe(angularVelocityA)));
                            float invMassB = 0;

                            if (rigidbodyIndex >= 0)
                            {
                                angVelDeltaB     = math.mul(-rigidbodies[rigidbodyIndex].inverseInertiaTensor, new float4(math.cross(rB.xyz, totalImpulse.xyz), 0));
                                angularVelocityB = rigidbodies[rigidbodyIndex].angularVelocity + angVelDeltaB;
                                invMassB         = math.length(math.mul(rigidbodies[rigidbodyIndex].inverseInertiaTensor, math.normalizesafe(angularVelocityB)));
                            }

                            // Calculate rolling axis and angular velocity deltas:
                            float4 rollAxis       = float4.zero;
                            float  rollingImpulse = contact.SolveRollingFriction(angularVelocityA, angularVelocityB, material.rollingFriction, invMassA, invMassB, ref rollAxis);
                            angVelDeltaA += rollAxis * rollingImpulse * invMassA;
                            angVelDeltaB -= rollAxis * rollingImpulse * invMassB;

                            // Apply orientation delta to particles:
                            quaternion orientationDelta = BurstIntegration.AngularVelocityToSpinQuaternion(orientationA, angVelDeltaA, substepTime);

                            for (int j = 0; j < simplexSize; ++j)
                            {
                                int        particleIndex = simplices[simplexStart + j];
                                quaternion qA            = orientationDeltas[particleIndex];
                                qA.value += orientationDelta.value;
                                orientationDeltas[particleIndex] = qA;
                                orientationCounts[particleIndex]++;
                            }

                            // Apply angular velocity delta to rigidbody:
                            if (rigidbodyIndex >= 0)
                            {
                                float4 angularDelta = rigidbodyAngularDeltas[rigidbodyIndex];
                                angularDelta += angVelDeltaB;
                                rigidbodyAngularDeltas[rigidbodyIndex] = angularDelta;
                            }
                        }
                    }

                    contacts[i] = contact;
                }
            }