コード例 #1
0
ファイル: SimpleExperiment.cs プロジェクト: afcarl/IESoR
        public ESBodyInformation genomeIntoBodyObject(IGenome genome, out bool isEmpty)
        {
            INetwork net = GenomeDecoder.DecodeToModularNetwork((NeatGenome)genome);

            isEmpty = false;

            //we want the genome, so we can acknowledge the genomeID!

            //now convert a network to a set of hidden neurons and connections

            //we'll make body specific function calls later
            var allBodyOutputs       = new List <List <float> >();
            var allBodyInputs        = new List <PointPair>();
            var indexToConnectionMap = new Dictionary <int, int>();

            List <PointF> inputs, outputs, hiddenNeurons;

            inputs        = new List <PointF>();
            outputs       = new List <PointF>();
            hiddenNeurons = new List <PointF>();

            //inputs.Add(new PointF(0,0));

            //int initialDepth, ESIterations;
            //uint inputCount, outputCount;
            //float varianceThreshold, bandThreshold;

            ConnectionGeneList connections = new ConnectionGeneList();


            //loop through a grid, defined by some resolution, and test every connection against another using leo


            int resolution = 9;
            //int resolutionHalf = resolution / 2;

            List <PointF> queryPoints    = gridQueryPoints(resolution);
            float         xDistanceThree = dXDistance(resolution, 3.0f);
            float         yDistanceThree = dYDistance(resolution, 3.0f);


            bool useLeo = true;

            int counter = 0;
            Dictionary <long, PointF> conSourcePoints = new Dictionary <long, PointF>();
            Dictionary <long, PointF> conTargetPoints = new Dictionary <long, PointF>();


            //Dictionary<string, List<PointF>> pointsChecked = new Dictionary<string, List<PointF>>();
            //List<PointF> pList;
            int src, tgt;

            //for each points we have
            for (int p1 = 0; p1 < queryPoints.Count; p1++)
            {
                PointF xyPoint = queryPoints[p1];

                //query against all other points (possibly limiting certain connection lengths
                for (int p2 = p1; p2 < queryPoints.Count; p2++)
                {
                    PointF otherPoint = queryPoints[p2];

                    if (p1 != p2 && (Math.Abs(xyPoint.X - otherPoint.X) < xDistanceThree && Math.Abs(xyPoint.Y - otherPoint.Y) < yDistanceThree))
                    {
                        //if(!pointsChecked.TryGetValue(xyPoint.ToString(), out pList))
                        //{
                        //    pList = new List<PointF>();
                        //    pointsChecked.Add(xyPoint.ToString(), pList);
                        //}
                        //pList.Add(otherPoint);

                        //if (!pointsChecked.TryGetValue(otherPoint.ToString(), out pList))
                        //{
                        //    pList = new List<PointF>();
                        //    pointsChecked.Add(otherPoint.ToString(), pList);
                        //}
                        //pList.Add(xyPoint);

                        //Console.WriteLine("Checking: ({0}, {1}) => ({2}, {3}) ", xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y);

                        float[] outs   = queryCPPNOutputs((ModularNetwork)net, xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y, maxXDistanceCenter(xyPoint, otherPoint), minYDistanceGround(xyPoint, otherPoint));
                        float   weight = outs[0];

                        allBodyInputs.Add(new PointPair(xyPoint, otherPoint));
                        allBodyOutputs.Add(new List <float>(outs));


                        if (useLeo)
                        {
                            if (outs[1] > 0)
                            {
                                //Console.WriteLine("XY: " + xyPoint + " Other: " + otherPoint + " LEO : " + outs[1]) ;

                                //Console.WriteLine(" XDist: " + sqrt(xDistanceSq(xyPoint, otherPoint))
                                //    + " yDist : " + sqrt(yDistanceSq(xyPoint, otherPoint))
                                //    + " MaxDist: " + maxXDistanceCenter(xyPoint, otherPoint))
                                //+ " MinY: " + minYDistanceGround(xyPoint, otherPoint));
                                //Console.WriteLine();

                                //add to hidden neurons
                                if (!hiddenNeurons.Contains(xyPoint))
                                {
                                    hiddenNeurons.Add(xyPoint);
                                }

                                src = hiddenNeurons.IndexOf(xyPoint);

                                if (!hiddenNeurons.Contains(otherPoint))
                                {
                                    hiddenNeurons.Add(otherPoint);
                                }

                                tgt = hiddenNeurons.IndexOf(otherPoint);

                                conSourcePoints.Add(counter, xyPoint);
                                conTargetPoints.Add(counter, otherPoint);

                                indexToConnectionMap.Add(allBodyOutputs.Count - 1, counter);
                                connections.Add(new ConnectionGene(counter++, (src), (tgt), weight * HyperNEATParameters.weightRange, new float[] { xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y }, outs));
                            }
                        }
                        else
                        {
                            //add to hidden neurons
                            if (!hiddenNeurons.Contains(xyPoint))
                            {
                                hiddenNeurons.Add(xyPoint);
                            }

                            src = hiddenNeurons.IndexOf(xyPoint);

                            if (!hiddenNeurons.Contains(otherPoint))
                            {
                                hiddenNeurons.Add(otherPoint);
                            }

                            tgt = hiddenNeurons.IndexOf(otherPoint);

                            conSourcePoints.Add(counter, xyPoint);
                            conTargetPoints.Add(counter, otherPoint);

                            indexToConnectionMap.Add(allBodyOutputs.Count - 1, counter);
                            connections.Add(new ConnectionGene(counter++, (src), (tgt), weight * HyperNEATParameters.weightRange, new float[] { xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y }, outs));
                        }


                        //PointF newp = new PointF(p.x2, p.y2);

                        //targetIndex = hiddenNeurons.IndexOf(newp);
                        //if (targetIndex == -1)
                        //{
                        //    targetIndex = hiddenNeurons.Count;
                        //    hiddenNeurons.Add(newp);
                        //}
                        //connections.Add(new ConnectionGene(counter++, (sourceIndex), (targetIndex + inputCount + outputCount), p.weight * HyperNEATParameters.weightRange, new float[] { p.x1, p.y1, p.x2, p.y2 }, p.Outputs));
                    }
                }
            }



            //esSubstrate.generateSubstrate(inputs, outputs, net,
            //    HyperNEATParameters.initialDepth,
            //    (float)HyperNEATParameters.varianceThreshold,
            //     (float)HyperNEATParameters.bandingThreshold,
            //    HyperNEATParameters.ESIterations,
            //     (float)HyperNEATParameters.divisionThreshold,
            //    HyperNEATParameters.maximumDepth,
            //    (uint)inputs.Count, (uint)outputs.Count,
            //    ref connections, ref hiddenNeurons, true);


            //generateSubstrate(List<System.Drawing.PointF> inputNeuronPositions, List<PointF> outputNeuronPositions,
            //INetwork genome, int initialDepth, float varianceThreshold, float bandThreshold, int ESIterations,
            //                                    float divsionThreshold, int maxDepth,
            //                                    uint inputCount, uint outputCount,
            //                                    ref  ConnectionGeneList connections, ref List<PointF> hiddenNeurons)

            //blow out the object, we don't care about testing it

            //foreach (var pPair in pointsChecked)
            //{
            //    Console.WriteLine("Checking: " + pPair.Key + " processed: ");

            //    foreach (var xyPoint in pPair.Value)
            //    {
            //        Console.WriteLine("({0}, {1}) ", xyPoint.X, xyPoint.Y);
            //    }
            //}

            var beforeConn   = connections.Count;
            var beforeNeuron = hiddenNeurons.Count;

            //var hiddenCopy = new List<PointF>(hiddenNeurons);

            ensureSingleConnectedStructure(connections, hiddenNeurons, conSourcePoints, conTargetPoints);

            if (hiddenNeurons.Count > 20 || connections.Count > 100)
            {
                hiddenNeurons = new List <PointF>();
                connections   = new ConnectionGeneList();
            }


            if (hiddenNeurons.Count == 0 || connections.Count == 0)
            {
                isEmpty = true;
            }

            NeatGenome ng = (NeatGenome)genome;

            bool behaviorExists = (ng.Behavior != null);

            ESBodyInformation esbody = new ESBodyInformation()
            {
                AllBodyOutputs    = allBodyOutputs,
                AllBodyInputs     = allBodyInputs,
                indexToConnection = indexToConnectionMap,
                //PreHiddenLocations = hiddenCopy,
                BeforeNeuron     = beforeNeuron,
                BeforeConnection = beforeConn,
                GenomeID         = genome.GenomeId,
                Connections      = connections,
                HiddenLocations  = hiddenNeurons,
                InputLocations   = inputs,
                Objectives       = ng.objectives,
                Fitness          = ng.Fitness,
                Locality         = ng.locality,
                useLEO           = useLeo
            };

            Console.WriteLine(" Nodes: " + hiddenNeurons.Count + " Connections: " + connections.Count);

            return(esbody);
        }
コード例 #2
0
ファイル: SimpleExperiment.cs プロジェクト: OptimusLime/IESoR
        public ESBodyInformation genomeIntoBodyObject(IGenome genome, out bool isEmpty)
        {
            INetwork net = GenomeDecoder.DecodeToModularNetwork((NeatGenome)genome);
            isEmpty = false;

            //we want the genome, so we can acknowledge the genomeID!

            //now convert a network to a set of hidden neurons and connections

            //we'll make body specific function calls later
            var allBodyOutputs = new List<List<float>>();
            var allBodyInputs = new List<PointPair>();
            var indexToConnectionMap = new Dictionary<int, int>();

            List<PointF> inputs, outputs, hiddenNeurons;
            inputs = new List<PointF>();
            outputs = new List<PointF>();
            hiddenNeurons = new List<PointF>();

            //inputs.Add(new PointF(0,0));

            //int initialDepth, ESIterations;
            //uint inputCount, outputCount;
            //float varianceThreshold, bandThreshold;

            ConnectionGeneList connections = new ConnectionGeneList();

            //loop through a grid, defined by some resolution, and test every connection against another using leo

            int resolution = 9;
            //int resolutionHalf = resolution / 2;

            List<PointF> queryPoints = gridQueryPoints(resolution);
            float xDistanceThree = dXDistance(resolution, 3.0f);
            float yDistanceThree = dYDistance(resolution, 3.0f);

            bool useLeo = true;

            int counter = 0;
            Dictionary<long, PointF> conSourcePoints = new Dictionary<long, PointF>();
            Dictionary<long, PointF> conTargetPoints = new Dictionary<long, PointF>();

            //Dictionary<string, List<PointF>> pointsChecked = new Dictionary<string, List<PointF>>();
            //List<PointF> pList;
            int src, tgt;
            //for each points we have
            for(int p1=0; p1 < queryPoints.Count; p1++)
            {
                PointF xyPoint = queryPoints[p1];

                //query against all other points (possibly limiting certain connection lengths
                for(int p2 = p1; p2 < queryPoints.Count; p2++)
                {
                    PointF otherPoint = queryPoints[p2];

                    if (p1 != p2 && (Math.Abs(xyPoint.X - otherPoint.X) < xDistanceThree && Math.Abs(xyPoint.Y - otherPoint.Y) < yDistanceThree))
                    {
                        //if(!pointsChecked.TryGetValue(xyPoint.ToString(), out pList))
                        //{
                        //    pList = new List<PointF>();
                        //    pointsChecked.Add(xyPoint.ToString(), pList);
                        //}
                        //pList.Add(otherPoint);

                        //if (!pointsChecked.TryGetValue(otherPoint.ToString(), out pList))
                        //{
                        //    pList = new List<PointF>();
                        //    pointsChecked.Add(otherPoint.ToString(), pList);
                        //}
                        //pList.Add(xyPoint);

                        //Console.WriteLine("Checking: ({0}, {1}) => ({2}, {3}) ", xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y);

                        float[] outs = queryCPPNOutputs((ModularNetwork)net, xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y, maxXDistanceCenter(xyPoint, otherPoint),  minYDistanceGround(xyPoint, otherPoint));
                        float weight = outs[0];

                        allBodyInputs.Add(new PointPair(xyPoint, otherPoint));
                        allBodyOutputs.Add(new List<float>(outs));

                        if (useLeo )
                        {

                            if (outs[1] > 0)
                            {
                                //Console.WriteLine("XY: " + xyPoint + " Other: " + otherPoint + " LEO : " + outs[1]) ;

                                //Console.WriteLine(" XDist: " + sqrt(xDistanceSq(xyPoint, otherPoint))
                                //    + " yDist : " + sqrt(yDistanceSq(xyPoint, otherPoint))
                                //    + " MaxDist: " + maxXDistanceCenter(xyPoint, otherPoint))
                                   //+ " MinY: " + minYDistanceGround(xyPoint, otherPoint));
                                //Console.WriteLine();

                                //add to hidden neurons
                                if (!hiddenNeurons.Contains(xyPoint))
                                    hiddenNeurons.Add(xyPoint);

                                src = hiddenNeurons.IndexOf(xyPoint);

                                if (!hiddenNeurons.Contains(otherPoint))
                                    hiddenNeurons.Add(otherPoint);

                                tgt = hiddenNeurons.IndexOf(otherPoint);

                                conSourcePoints.Add(counter, xyPoint);
                                conTargetPoints.Add(counter, otherPoint);

                                indexToConnectionMap.Add(allBodyOutputs.Count-1, counter);
                                connections.Add(new ConnectionGene(counter++, (src), (tgt), weight * HyperNEATParameters.weightRange, new float[] { xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y }, outs));

                            }
                        }
                        else
                        {
                            //add to hidden neurons
                            if (!hiddenNeurons.Contains(xyPoint))
                                hiddenNeurons.Add(xyPoint);

                            src = hiddenNeurons.IndexOf(xyPoint);

                            if (!hiddenNeurons.Contains(otherPoint))
                                hiddenNeurons.Add(otherPoint);

                            tgt = hiddenNeurons.IndexOf(otherPoint);

                            conSourcePoints.Add(counter, xyPoint);
                            conTargetPoints.Add(counter, otherPoint);

                            indexToConnectionMap.Add(allBodyOutputs.Count - 1, counter);
                            connections.Add(new ConnectionGene(counter++, (src), (tgt), weight * HyperNEATParameters.weightRange, new float[] { xyPoint.X, xyPoint.Y, otherPoint.X, otherPoint.Y }, outs));

                        }

                        //PointF newp = new PointF(p.x2, p.y2);

                        //targetIndex = hiddenNeurons.IndexOf(newp);
                        //if (targetIndex == -1)
                        //{
                        //    targetIndex = hiddenNeurons.Count;
                        //    hiddenNeurons.Add(newp);
                        //}
                        //connections.Add(new ConnectionGene(counter++, (sourceIndex), (targetIndex + inputCount + outputCount), p.weight * HyperNEATParameters.weightRange, new float[] { p.x1, p.y1, p.x2, p.y2 }, p.Outputs));

                    }
                }

            }

            //esSubstrate.generateSubstrate(inputs, outputs, net,
            //    HyperNEATParameters.initialDepth,
            //    (float)HyperNEATParameters.varianceThreshold,
            //     (float)HyperNEATParameters.bandingThreshold,
            //    HyperNEATParameters.ESIterations,
            //     (float)HyperNEATParameters.divisionThreshold,
            //    HyperNEATParameters.maximumDepth,
            //    (uint)inputs.Count, (uint)outputs.Count,
            //    ref connections, ref hiddenNeurons, true);

            //generateSubstrate(List<System.Drawing.PointF> inputNeuronPositions, List<PointF> outputNeuronPositions,
            //INetwork genome, int initialDepth, float varianceThreshold, float bandThreshold, int ESIterations,
            //                                    float divsionThreshold, int maxDepth,
            //                                    uint inputCount, uint outputCount,
            //                                    ref  ConnectionGeneList connections, ref List<PointF> hiddenNeurons)

            //blow out the object, we don't care about testing it

            //foreach (var pPair in pointsChecked)
            //{
            //    Console.WriteLine("Checking: " + pPair.Key + " processed: ");

            //    foreach (var xyPoint in pPair.Value)
            //    {
            //        Console.WriteLine("({0}, {1}) ", xyPoint.X, xyPoint.Y);
            //    }
            //}

            var beforeConn = connections.Count;
            var beforeNeuron = hiddenNeurons.Count;
            //var hiddenCopy = new List<PointF>(hiddenNeurons);

            ensureSingleConnectedStructure(connections, hiddenNeurons, conSourcePoints, conTargetPoints);

            if (hiddenNeurons.Count > 20 || connections.Count > 100)
            {
                hiddenNeurons = new List<PointF>();
                connections = new ConnectionGeneList();
            }

            if (hiddenNeurons.Count == 0 || connections.Count == 0)
                isEmpty = true;

            NeatGenome ng = (NeatGenome)genome;

            bool behaviorExists = (ng.Behavior != null);

            ESBodyInformation esbody = new ESBodyInformation() {
                AllBodyOutputs = allBodyOutputs,
                AllBodyInputs = allBodyInputs,
                indexToConnection = indexToConnectionMap,
                //PreHiddenLocations = hiddenCopy,
                BeforeNeuron = beforeNeuron,
                BeforeConnection = beforeConn,
                GenomeID = genome.GenomeId,
                Connections = connections,
                HiddenLocations = hiddenNeurons,
                InputLocations = inputs,
                Objectives = ng.objectives,
                Fitness =  ng.Fitness,
                Locality = ng.locality,
                useLEO = useLeo
            };
            Console.WriteLine(" Nodes: " + hiddenNeurons.Count + " Connections: " + connections.Count);

            return esbody;
        }