public NeuroNetSolvingWindow(NeuroNet net) { InitializeComponent(); currentNet = net; inputs = new List<Tuple<Label, TextBox>>(); outputs = new List<Tuple<Label, TextBox>>(); for (int i = 0; i < net.InputNeuronsCount; i++) { Label lb = new Label(); lb.Text = "x[" + i + "]="; lb.Location = new Point(15, 17 + i * 25); lb.Size = new Size(lb.Text.Length * 8, 20); gbInputs.Controls.Add(lb); TextBox tb = new TextBox(); tb.Text = "0,0"; tb.Location = new Point(lb.Text.Length * 10 + 5, 15 + i * 25); tb.Size = new Size(100, 20); gbInputs.Controls.Add(tb); inputs.Add(new Tuple<Label, TextBox>(lb, tb)); } for (int i = 0; i < net.OutputNeuronsCount; i++) { Label lb = new Label(); lb.Text = "y[" + i + "]="; lb.Location = new Point(15, 17 + i * 25); lb.Size = new Size(lb.Text.Length * 8, 20); gbOutputs.Controls.Add(lb); TextBox tb = new TextBox(); tb.Text = "0,0"; tb.Location = new Point(lb.Text.Length * 10 + 5, 15 + i * 25); tb.Size = new Size(100, 20); gbOutputs.Controls.Add(tb); outputs.Add(new Tuple<Label, TextBox>(lb, tb)); } }
private void btnUse_Click(object sender, EventArgs e) { int countInputNeurons = dbHandler.SelectCountInputParametersInTask(lbTaskSelected.Text); int countOutputNeurons = 1; ActivateFunction af = LibraryOfActivateFunctions. GetActivateFunction(dbHandler.SelectActivateFunctionTypeByNeuroNet(lbNetSelected.Text), LibraryOfActivateFunctions.GetterParameter.TypeOfActivateFunctionName); List<double> valuesOfParametersAF = dbHandler.SelectValuesOfParametersOfAF(lbNetSelected.Text); int k = 0; foreach (double item in valuesOfParametersAF) { af.SetValueOfParameter(k, item); k++; } int countNeurons = dbHandler.SelectCountNeuronsInNet(lbNetSelected.Text); bool[,] connections = new bool[countNeurons, countNeurons]; double[,] weights = new double[countNeurons, countNeurons]; List<Tuple<int, int, double>> ls = dbHandler.SelectLearnedTopology(lbNetSelected.Text, lbSelSelected.Text, LearningAlgorithmsLibrary.GetNameOfTypeOfAlgoritm(lbLASelected.Text)); for (int i = 0; i < countNeurons; i++) { for (int j = 0; j < countNeurons; j++) { connections[i, j] = false; weights[i, j] = 0.0; } } foreach (Tuple<int, int, double> item in ls) { connections[item.Item2, item.Item1] = true; weights[item.Item2, item.Item1] = item.Item3; } int[] neuronsInLayers = dbHandler.SelectNeuronsInLayers(lbNetSelected.Text); NeuroNet net = new NeuroNet(countInputNeurons, countOutputNeurons, neuronsInLayers, connections, weights, af); NeuroNetSolvingWindow solvingWnd = new NeuroNetSolvingWindow(net); solvingWnd.Show(); }
public NeuroNetLearningInterface(NeuroNet net, string _neuroNetName, string _selectionName) { learned_net = net; netName = _neuroNetName; selectionName = _selectionName; }