コード例 #1
0
ファイル: Neuron.cs プロジェクト: logancrmp/neuralator
        /// <summary>
        /// Construct an instance of a Neuron. This should only be called from the
        /// constructor of the NeuralLayer that will own this Neuron.
        /// </summary>
        /// <param name="ParentNeuralLayer">A reference to the parent NeuralLayer that constructed this Neuron.</param>
        internal Neuron(NeuralLayer ParentNeuralLayer, UInt32 UniqueID)
        {
            this.UniqueID = UniqueID;

            InputConnections  = new List <Dendrite>();
            OutputConnections = new List <Dendrite>();

            this.ParentNeuralLayer = ParentNeuralLayer;
        }
コード例 #2
0
        public bool Equals(NeuralLayer other)
        {
            bool Equals = (LayerIndex == other.LayerIndex);

            for (int iter = 0; (iter < NeuronsInLayer.Count && Equals); iter += 1)
            {
                Equals &= NeuronsInLayer[iter].Equals(other.NeuronsInLayer[iter]);
            }

            return(Equals);
        }
コード例 #3
0
        internal NeuralLayer GetNextNeuralLayer()
        {
            NeuralLayer ReturnValue = default(NeuralLayer);

            if (ParentNeuralNet.NeuralLayers.ContainsKey((UInt16)(LayerIndex + 1)))
            {
                ReturnValue = ParentNeuralNet.NeuralLayers[(UInt16)(LayerIndex + 1)];
            }

            return(ReturnValue);
        }
コード例 #4
0
ファイル: Neuron.cs プロジェクト: logancrmp/neuralator
        /// <summary>
        /// Connect this Neuron to each of the Neurons in the next layer.
        /// </summary>
        internal void Connect()
        {
            NeuralLayer NextNeuralLayer = ParentNeuralLayer.GetNextNeuralLayer();

            if (NextNeuralLayer != default(NeuralLayer))
            {
                foreach (var NeuronToConnect in NextNeuralLayer.NeuronsInLayer)
                {
                    OutputConnections.Add(new Dendrite(this, NeuronToConnect));
                }
            }
        }
コード例 #5
0
ファイル: Neuralator.cs プロジェクト: logancrmp/neuralator
        internal static NeuralNet Breed(NeuralNet Father, NeuralNet Mother)
        {
            NeuralNet Child = new NeuralNet(NeuralLayerInfo);

            for (UInt16 LayerIter = 0; LayerIter < NeuralLayerInfo.Count(); LayerIter += 1)
            {
                NeuralLayer CurrentLayer = Child.NeuralLayers[LayerIter];

                for (int NeuronIter = 0; NeuronIter < CurrentLayer.NeuronsInLayer.Count(); NeuronIter += 1)
                {
                    Neuron CurrentNeuron = CurrentLayer.NeuronsInLayer[NeuronIter];

                    for (int DendriteIter = 0; DendriteIter < CurrentNeuron.OutputConnections.Count(); DendriteIter += 1)
                    {
                        Dendrite CurrentDendrite = CurrentNeuron.OutputConnections[DendriteIter];

                        if (GlobalRandom.NextDouble() < Math.Min(MaxMutationRate, (BaseMutationRate + (MutationRateIncreasePerFailedGeneration * GensSinceLastImprv))))
                        {
                            CurrentDendrite.SetNewRandomConnectionStrength();
                        }
                        else
                        {
                            // Children are always random
                            switch (BreedingType)
                            {
                            case EnumBreedingType.AlwaysRandom:

                                CurrentDendrite.SetNewRandomConnectionStrength();

                                break;


                            // Child dendrite connection strength is the average of the mother and father
                            case EnumBreedingType.AverageValue:

                                CurrentDendrite.ConnectionStrength =
                                    (Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength +
                                     Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength) / 2;

                                break;


                            // Child takes fathers or mothers dendrite connection strength
                            default:
                            case EnumBreedingType.Human:

                                CurrentDendrite.ConnectionStrength = (GlobalRandom.NextDouble() < 0.5)
                                    ? Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength
                                    : Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength;

                                break;


                            // Child dendrite connection strength pulled up and down by agreement between father and mother
                            case EnumBreedingType.WeightedPull:

                                if (Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength >= 0.5 &&
                                    Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength >= 0.5)
                                {
                                    CurrentDendrite.ConnectionStrength = (float)Math.Min(1.0, Math.Max(
                                                                                             Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength,
                                                                                             Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength
                                                                                             ) + 0.01);
                                }
                                else
                                if (Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength < 0.5 &&
                                    Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength < 0.5)
                                {
                                    CurrentDendrite.ConnectionStrength = (float)Math.Max(0, Math.Min(
                                                                                             Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength,
                                                                                             Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength
                                                                                             ) - 0.01);
                                }
                                else
                                {
                                    CurrentDendrite.ConnectionStrength = (GlobalRandom.NextDouble() < 0.5)
                                            ? Father.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength
                                            : Mother.NeuralLayers[LayerIter].NeuronsInLayer[NeuronIter].OutputConnections[DendriteIter].ConnectionStrength;
                                }

                                break;
                            }
                        }
                    }
                }
            }

            return(Child);
        }