private void ui_load_Click(object sender, EventArgs e) { DataLoader fileLoader = new DataLoader(); fileLoader.prepareOpen(dataPath, "train", "gauss_5", 1000, 0); fileLoader.open(); data.trainingData = fileLoader._imgArr; fileLoader.prepareOpen(labelPath, "train", "clean", 1000, 0); fileLoader.open(); data.trainingLabels = fileLoader._imgArr; for (int i=0; i<999; i++) { double[] input = data.normalize(data.trainingData[i]); double[] target = data.normalize(data.trainingLabels[i]); nn.prepareFeed(input, target); nn.feedForward(); nn.backprop(); nn.trainingErrors[i] = nn.getError(); } //FileLoader testDataLoader = new FileLoader(); //FileLoader testLabelLoader = new FileLoader(); //FileLoader trainDataLoader = new FileLoader(); //FileLoader trainLabelLoader = new FileLoader(); //status_bar.Text = "Loading test Data. PLease wait!"; //int type = ui_noiseType.SelectedIndex; //string noiseType = string.Empty; //switch (type) //{ // case 0: // noiseType = "gauss_5"; // break; // case 1: // noiseType = "gauss_10"; // break; // case 2: // noiseType = "gauss_15"; // break; // case 3: // noiseType = "snp_002"; // break; // case 4: // noiseType = "snp_005"; // break; // case 5: // noiseType = "snp_01"; // break; // case 6: // noiseType = "gauss_5_snp_005"; // break; // case 7: // noiseType = "gauss_10_snp_002"; // break; // case 8: // noiseType = "gauss_15_snp_01"; // break; // case 9: // noiseType = "random"; // break; //} //try //{ // testDataLoader.prepareOpen(dataPath, "test", noiseType, 100); // Thread testDataThread = new Thread(new ThreadStart(testDataLoader.open)); // testLabelLoader.prepareOpen(labelPath, "test", "clean", 100); // Thread testLabelThread = new Thread(new ThreadStart(testLabelLoader.open)); // trainDataLoader.prepareOpen(dataPath, "train", noiseType, 600); // Thread trainDataThread = new Thread(new ThreadStart(trainDataLoader.open)); // trainLabelLoader.prepareOpen(labelPath, "train", "clean", 600); // Thread trainLabelThread = new Thread(new ThreadStart(trainLabelLoader.open)); // testDataThread.Start(); // testDataThread.Join(); // testLabelThread.Start(); // testLabelThread.Join(); // trainDataThread.Start(); // trainDataThread.Join(); // trainLabelThread.Start(); // trainLabelThread.Join(); // //file_loader.open(label_path, "test", "clean", 10000); //} //catch (Exception ex) //{ // //somethign went wrong // status_bar.Text = "Shit happened with the file loader... fix it!"; //} //data.testData = testDataLoader._imgArr; //data.testLabels = testLabelLoader._imgArr; //data.trainingData = trainDataLoader._imgArr; //data.trainingLabels = trainLabelLoader._imgArr; }
private void ui_experiment_Click(object sender, EventArgs e) { DataLoader fileLoader = new DataLoader(); fileLoader.prepareOpen(dataPath, "train", "gauss_15", 1000, 0); fileLoader.open(); data.trainingData = fileLoader._imgArr; fileLoader.prepareOpen(labelPath, "train", "clean", 1000, 0); fileLoader.open(); data.trainingLabels = fileLoader._imgArr; NN nn = new NN(9, 2, 4); //units, (hidden) layers, sidmoid levels for (int i = 0; i < 999; i++) { for (int j = 1; j <= 9; j++) { for (int k = 1; k <= 9; k++) { } } double[] input = data.normalize(data.trainingData[i]); double[] target = data.normalize(data.trainingLabels[i]); nn.prepareFeed(input, target); nn.feedForward(); nn.backprop(); nn.trainingErrors[i] = nn.getError(); } }