public void save(string file_path_name) { FileStream stream = new FileStream(file_path_name, FileMode.Create); BinaryWriter writer = new BinaryWriter(stream); WeightLayerPool.save(writer); writer.Write(UnitLayers.Count); foreach (UnitLayer layer in UnitLayers.Values) { writer.Write(layer.Id); writer.Write(layer.Depth); writer.Write(layer.Width); writer.Write(layer.Height); } writer.Close(); stream.Close(); }
public void load(string file_path_name) { FileStream stream = new FileStream(file_path_name, FileMode.Open); BinaryReader reader = new BinaryReader(stream); WeightLayerPool.load(reader); int count = reader.ReadInt32(); for (int i = 0; i < count; i++) { string id = reader.ReadString(); int depth = reader.ReadInt32(); int width = reader.ReadInt32(); int height = reader.ReadInt32(); UnitLayer layer = new UnitLayer(id, width, height, depth); UnitLayers.Add(id, layer); } reader.Close(); stream.Close(); }
private void forward_convolute_on_depth(UnitLayer to, int stride, int depth, int length) { int to_depth = depth + length; if (to_depth >= to.Depth) { to_depth = to.Depth; } for (int d = depth; d < to_depth; d++) { WeightLayer weights = WeightLayerPool.find(Id, to.Id, d); int width_of_weights = weights.Width, height_of_weights = weights.Height; int width_of_units = to.Width, height_of_units = to.Height; for (int y = 0; y < height_of_units; y++) { int top = y * stride; int bottom = top + height_of_weights; for (int x = 0; x < width_of_units; x++) { int left = x * stride; to.set_value_at_inport(x, y, d, weights.convolute_product(left, top, left + width_of_weights, bottom, Units)); } } } }
private void backward_convolute_on_depth(UnitLayer to, int stride, int depth, int length) { int to_depth = depth + length; if (to_depth >= Depth) { to_depth = Depth; } for (int d = depth; d < to_depth; d++) { WeightLayer weights = WeightLayerPool.find(to.Id, Id, d); int width_of_weights = weights.Width, height_of_weights = weights.Height; for (int y = 0; y < Height; y++) { int top = y * stride; int bottom = top + height_of_weights; for (int x = 0; x < Width; x++) { int left = x * stride; to.diff_convolute_product(left, top, left + width_of_weights, bottom, Units[x, y, d].gradient_at_inport, weights); } } weights.diff_weights(); } }
private void backward_fully_connect_on_depth(UnitLayer to, int depth, int length) { int to_depth = depth + length; if (to_depth >= Depth) { to_depth = Depth; } for (int d = depth; d < to_depth; d++) { for (int y = 0; y < Height; y++) { for (int x = 0; x < Width; x++) { WeightLayer weights = WeightLayerPool.find(to.Id, Id, x, y, d); to.diff_fully_product(Units[x, y, d].gradient_at_inport, weights); weights.diff_weights(); } } } }
private void forward_fully_connect_on_depth(UnitLayer to, int depth, int length) { int width = to.Width, height = to.Height; int to_depth = depth + length; if (to_depth >= to.Depth) { to_depth = to.Depth; } for (int d = depth; d < to_depth; d++) { for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { WeightLayer weights = WeightLayerPool.find(Id, to.Id, x, y, d); to.set_value_at_inport(x, y, d, weights.fully_product(Units)); } } } }
public void create_convolution(UnitLayer to, int width, int height) { WeightLayerPool.create_convolution(this, to, width, height); }
public void create_fully_connection(UnitLayer to) { WeightLayerPool.create_fully_connection(this, to); }
public void clear_gradients() { clear_gradients_of_units(); WeightLayerPool.clear_gradients_of_weights(); }