コード例 #1
0
ファイル: FormNetwork.cs プロジェクト: diegosfb/NNDemo
        private void buttonRun_Click(object sender, EventArgs e)
        {
            Cursor.Current = Cursors.WaitCursor;
            textBoxResult.Clear();
            Matrix <double> testSetInput, testSetOutput;

            CreateTestingSet(out testSetInput, out testSetOutput);
            testSetPredictedOutcome = network.Forward(testSetInput);

            NetworkGraphics.ToTreeView(treeView1, network);
            NetworkGraphics.ToPictureBox(pictureBox1, network, 400, 0);

            textBoxResult.AppendText(dataSet.ProcessTestSetResults(testSetInput, testSetOutput, testSetPredictedOutcome));
            Cursor.Current = Cursors.Default;
        }
コード例 #2
0
ファイル: FormNetwork.cs プロジェクト: diegosfb/NNDemo
        private void buttonRunCase_Click(object sender, EventArgs e)
        {
            if (network.IsTrained && dataSet.GetType() == typeof(IrisFlowerDataSets))
            {
                Cursor.Current = Cursors.WaitCursor;
                var caseSet = new DataSet[1];
                caseSet[0] = new IrisFlower(Convert.ToDouble(textBoxSL.Text), Convert.ToDouble(textBoxSW.Text), Convert.ToDouble(textBoxPL.Text), Convert.ToDouble(textBoxPW.Text), IrisFlower.IrisSpecies.Unknown);
                textBoxResult.Clear();

                Matrix <double> runCaseInput = dataSet.CreatePropertiesMatrixFromSet(caseSet);
                Matrix <double> predicted    = network.Forward(runCaseInput);

                textBoxResult.AppendText(DataSet.ClassifyOutput(predicted.Column(0), NetworkGraphics.OutputNames, caseSet[0]));

                NetworkGraphics.ToTreeView(treeView1, network);
                NetworkGraphics.ToPictureBox(pictureBox1, network, 400, 0);
                Cursor.Current = Cursors.Default;
            }
        }
コード例 #3
0
ファイル: FormNetwork.cs プロジェクト: diegosfb/NNDemo
        private void buttonExport_Click(object sender, EventArgs e)
        {
            String path = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);

            string fileDetails = path + "\\NeuralNetworkConfig" + DateTime.Now.ToString("yyyy-dd-M--HH-mm-ss") + ".txt";
            string xmlFile     = path + "\\NeuralNetworkConfig" + DateTime.Now.ToString("yyyy-dd-M--HH-mm-ss") + ".xml";
            string sets        = path + "\\DataSet" + DateTime.Now.ToString("yyyy-dd-M--HH-mm-ss") + ".csv";
            string testResult  = path + "\\TestRun" + DateTime.Now.ToString("yyyy-dd-M--HH-mm-ss") + ".txt";

            File.AppendAllText(fileDetails, "NEURAL NETWORK CONFIG");
            File.AppendAllText(fileDetails, "\r\nLearning Rate: " + network.Alpha);
            File.AppendAllText(fileDetails, "\r\nMomentum: " + network.Momentum);
            File.AppendAllText(fileDetails, "\r\nEpochs used on the training: " + network.EpochsIterations);

            File.AppendAllText(fileDetails, "\r\n\r\nLAYERS STRUCTURE");

            foreach (var layer in network.Layers)
            {
                File.AppendAllText(fileDetails, "\r\n\r\nLayer " + layer.Name + " has " + layer.NeuronCount + " neurons");
                File.AppendAllText(fileDetails, "\r\nActivation Function: " + layer.activationFunction.Method.Name);

                if (network.UseNeuronBias)
                {
                    for (int i = 0; i < layer.NeuronCount; i++)
                    {
                        File.AppendAllText(fileDetails, "\r\nNeuron " + i + " - Bias: " + layer.Bias[1, i]);
                    }
                }

                if (layer.Synapse != null)
                {
                    File.AppendAllText(fileDetails, "\r\nWeights Matrix - " + layer.Synapse);
                }
            }

            ExportDataSets(sets);
            NetworkGraphics.ExportTreeViewToXml(treeView1, xmlFile);
            MessageBox.Show("Files " + fileDetails + " & " + xmlFile + " SUCCESSFULY CREATED");
        }
コード例 #4
0
ファイル: FormNetwork.cs プロジェクト: diegosfb/NNDemo
        private void buttonTrain_Click(object sender, EventArgs e)
        {
            Cursor.Current = Cursors.WaitCursor;
            Matrix <double> trainingSetInput, trainingSetOutput;

            CreateTrainingSet(out trainingSetInput, out trainingSetOutput);
            textBoxResult.Clear();

            //////////////////////Configure Network///////////////////////////
            List <int> hiddenLayersWidth = new List <int>();

            hiddenLayersWidth.Add(3);
            network.EpochsIterations = 1000000;
            network.Alpha            = 0.005;
            //network.Momentum = 0.1;
            network.UseNeuronBias = false;

            //////////////////////////////////////////////////////////////////

            var watch = System.Diagnostics.Stopwatch.StartNew();

            network.TrainNetwork(trainingSetInput, trainingSetOutput, hiddenLayersWidth);

            watch.Stop();
            var elapsedMs = watch.ElapsedMilliseconds;

            //Console.WriteLine("Elapsed Training Time (ms): " + elapsedMs); //For Debug purposes

            NetworkGraphics.ToTreeView(treeView1, network);
            NetworkGraphics.ToPictureBox(pictureBox1, network, 400, 0);

            buttonRun.Enabled      = network.IsTrained;
            buttonRunCase.Enabled  = network.IsTrained && (dataSet.GetType() == typeof(IrisFlowerDataSets));
            buttonGenerate.Enabled = network.IsTrained && (dataSet.GetType() == typeof(IrisFlowerDataSets));
            buttonExport.Enabled   = network.IsTrained;
            Cursor.Current         = Cursors.Default;
        }