コード例 #1
0
        static void Train(String[] words)
        {
            Layer[] layer = new Layer[]
            {
                new ConvolutionalLayer(3, 3, 3, 0, 1),
                new ConvolutionalLayer(3, 3, 3, 0, 1),              //26
                new Lib.Layers.Convolutional.LeakyReluLayer(),
                new ConvolutionalLayer(2, 2, 3, 0, 1),              //24
                new Lib.Layers.Convolutional.LeakyReluLayer(),
                new ConvolutionalLayer(2, 2, 3, 0, 1),              //22
                new Lib.Layers.Convolutional.LeakyReluLayer(),
                new FullyConnectedLayer(1728),
                new SoftmaxLayer(10)
            };

            nn = new Lib.NeuralNetwork(Lib.NeuralNetwork.random, layer);

            if (nn == null)
            {
                Console.WriteLine("you must first initialize a Neural Network.");
                return;
            }

            TrainingData[] data    = Loader.loadTestMNSIT(@"C:\Users\drumm\Desktop\MNIST");
            Trainer        trainer = new Trainer(data);

            Matrix.table(nn.feedforward(data[0].inputs));

            Matrix.table(data[0].labels);


            trainer.Train(nn);

            Matrix.table(data[0].labels);


            Matrix.table(nn.feedforward(data[0].inputs));
            Console.WriteLine("Training is completed succesfully!");
        }
コード例 #2
0
        static void createNeuralNetwork(String[] words)
        {
            Random r = Lib.NeuralNetwork.random;

            try
            {
                if (Char.IsDigit(words[1].ToCharArray()[0]))
                {
                    int[] nodes = new int[words.Length - 1];
                    for (int i = 0; i < nodes.Length; i++)
                    {
                        nodes[i] = int.Parse(words[i + 1]);
                    }
                    nn = new Lib.NeuralNetwork(r, nodes);
                }
                else
                {
                    Layer[] layers = new Layer[(words.Length - 1) / 2];

                    for (int i = 1; i < words.Length; i += 2)
                    {
                        if (words[i].Equals("relu"))
                        {
                            int nodes = int.Parse(words[i + 1]);
                            layers[(i - 1) / 2] = new ReluLayer(nodes);
                        }
                        else if (words[i].Equals("do"))
                        {
                            int nodes = int.Parse(words[i + 1]);
                            layers[(i - 1) / 2] = new DropoutLayer(nodes);
                        }
                        else if (words[i].Equals("lrelu"))
                        {
                            int nodes = int.Parse(words[i + 1]);
                            layers[(i - 1) / 2] = new Lib.Layers.LeakyReluLayer(nodes);
                        }
                        else
                        {
                            Console.WriteLine("There is no layer type like \"" + words[i] + "\"");
                            return;
                        }
                    }

                    for (int i = 0; i < layers.Length; i++)
                    {
                        if (i != layers.Length - 1)
                        {
                            layers[i].weights = new Matrix(layers[i + 1].nodes, layers[i].nodes);
                            layers[i].weights.randomize(r);
                        }

                        layers[i].bias = new Matrix(layers[i].nodes, 1);
                        layers[i].bias.randomize(r);
                    }

                    nn = new Lib.NeuralNetwork(Lib.NeuralNetwork.random, layers);
                }
            } catch (Exception e)
            {
                printError(e);
                return;
            }
            Console.WriteLine("Neural Network was created succesfully!");
        }
コード例 #3
0
        public static NeuralNetwork loadNetwork(String file_name)
        {
            String text;

            String[] sections;

            Layer[] layers;

            using (StreamReader streamReader = new StreamReader("models\\" + file_name + ".network", Encoding.UTF8))
            {
                text     = streamReader.ReadToEnd();
                sections = text.Split("#".ToCharArray());
            }

            String[] values = sections[0].Split(";".ToCharArray());
            layers = new Layer[values.Length];

            for (int i = 0; i < sections.Length; i++)
            {
                if (i == 0)
                {
                    for (int j = 0; j < layers.Length; j++)
                    {
                        String[] curText = values[j].Split(" ".ToCharArray());

                        if (curText[0] == "relu")
                        {
                            int layer_nodes = int.Parse(curText[1]);

                            layers[j] = new ReluLayer(layer_nodes);
                        }
                        else if (curText[0] == "do")
                        {
                            int layer_nodes = int.Parse(curText[1]);

                            layers[j] = new DropoutLayer(layer_nodes);
                        }
                        else if (curText[0] == "lrelu")
                        {
                            int layer_nodes = int.Parse(curText[1]);

                            layers[j] = new LeakyReluLayer(layer_nodes);
                        }
                        if (j == layers.Length - 1)
                        {
                            layers[j].weights = new Matrix(1, 1);
                        }
                    }
                }
                else if (layers[i - 1].weights == null)
                {
                    int index = i - 1;
                    values = sections[i].Split(";".ToCharArray());

                    int rows = values.Length;
                    int cols = values[0].Split(" ".ToCharArray()).Length;

                    Matrix m = new Matrix(rows, cols);

                    for (int j = 0; j < values.Length; j++)
                    {
                        String[] comp = values[j].Split(" ".ToCharArray());

                        for (int k = 0; k < comp.Length; k++)
                        {
                            m.data[j, k] = float.Parse(comp[k]);
                        }
                    }

                    Matrix.table(m);

                    layers[index].weights = m;
                }
            }

            NeuralNetwork nn = new NeuralNetwork(layers);

            return(nn);
        }