コード例 #1
0
        public MultiLayerNeuralNet(MultiLayerNeuralNet pattern)
        {
            // Copy input layer wages.
            this.wagesBetweenInputAndFirstHiddenLayer =
                new float
                [pattern.wagesBetweenInputAndFirstHiddenLayer.GetLength(0),
                 pattern.wagesBetweenInputAndFirstHiddenLayer.GetLength(1)];

            Array.Copy(
                pattern.wagesBetweenInputAndFirstHiddenLayer,
                this.wagesBetweenInputAndFirstHiddenLayer,
                pattern.wagesBetweenInputAndFirstHiddenLayer.GetLength(0) * pattern.wagesBetweenInputAndFirstHiddenLayer.GetLength(1));

            //Copy hidden layers wages and biases.
            this.wagesBetweenHiddenLayers = new float[pattern.wagesBetweenHiddenLayers.GetLength(0)][, ];

            for (int i = 0; i < this.wagesBetweenHiddenLayers.Length; i++)
            {
                this.wagesBetweenHiddenLayers[i] =
                    new float[pattern.wagesBetweenHiddenLayers[i].GetLength(0), pattern.wagesBetweenHiddenLayers[i].GetLength(1)];

                Array.Copy(
                    pattern.wagesBetweenHiddenLayers[i],
                    this.wagesBetweenHiddenLayers[i],
                    pattern.wagesBetweenHiddenLayers[i].GetLength(0) * pattern.wagesBetweenHiddenLayers[i].GetLength(1));
            }

            this.biasesInHiddenLayers = new float[pattern.biasesInHiddenLayers.Length][];

            for (int i = 0; i < this.biasesInHiddenLayers.Length; i++)
            {
                this.biasesInHiddenLayers[i] = new float[pattern.biasesInHiddenLayers[i].Length];

                Array.Copy(
                    pattern.biasesInHiddenLayers[i],
                    this.biasesInHiddenLayers[i],
                    pattern.biasesInHiddenLayers[i].Length);
            }

            // Copy output layer wages and biases.
            this.wagesBetweenLastHiddenAndOutputLayer =
                new float
                [pattern.wagesBetweenLastHiddenAndOutputLayer.GetLength(0),
                 pattern.wagesBetweenLastHiddenAndOutputLayer.GetLength(1)];

            Array.Copy(
                pattern.wagesBetweenLastHiddenAndOutputLayer,
                this.wagesBetweenLastHiddenAndOutputLayer,
                pattern.wagesBetweenLastHiddenAndOutputLayer.GetLength(0) * pattern.wagesBetweenLastHiddenAndOutputLayer.GetLength(1));

            this.biasesInOutputLayer = new float[pattern.biasesInOutputLayer.Length];

            Array.Copy(
                pattern.biasesInOutputLayer,
                this.biasesInOutputLayer,
                pattern.biasesInOutputLayer.Length);

            // Copy activation function
            this.activationFunction = pattern.activationFunction;
        }
コード例 #2
0
        public INeuralNet Crossover(INeuralNet other)
        {
            if (other is MultiLayerNeuralNet == false)
            {
                throw new ApplicationException("'other' should be of type COneLayerNeuralNet to be able to crossover with COneLayerNeuralNet.");
            }

            var child = new MultiLayerNeuralNet(
                this.wagesBetweenInputAndFirstHiddenLayer.GetLength(0),
                this.wagesBetweenLastHiddenAndOutputLayer.GetLength(1),
                this.wagesBetweenInputAndFirstHiddenLayer.GetLength(1),
                this.wagesBetweenHiddenLayers.Length + 1);

            var castedOther = other as MultiLayerNeuralNet;

            child.wagesBetweenInputAndFirstHiddenLayer =
                CrossoverHelper.Crossover(this.wagesBetweenInputAndFirstHiddenLayer, castedOther.wagesBetweenInputAndFirstHiddenLayer);

            for (int i = 0; i < this.wagesBetweenHiddenLayers.Length; i++)
            {
                child.wagesBetweenHiddenLayers[i] =
                    CrossoverHelper.Crossover(this.wagesBetweenHiddenLayers[i], castedOther.wagesBetweenHiddenLayers[i]);
            }

            for (int i = 0; i < this.biasesInHiddenLayers.Length; i++)
            {
                child.biasesInHiddenLayers[i] =
                    CrossoverHelper.Crossover(this.biasesInHiddenLayers[i], castedOther.biasesInHiddenLayers[i]);
            }

            child.wagesBetweenLastHiddenAndOutputLayer =
                CrossoverHelper.Crossover(this.wagesBetweenLastHiddenAndOutputLayer, castedOther.wagesBetweenLastHiddenAndOutputLayer);

            child.biasesInOutputLayer =
                CrossoverHelper.Crossover(this.biasesInOutputLayer, castedOther.biasesInOutputLayer);

            return(child);
        }