public double Noise1D(double x, NoiseQuality quality) { //returns a noise value between -0.5 and 0.5 int ix0, ix1; double fx0, fx1; double s, n0, n1; ix0 = NoiseHelper.FastFloor(x); // Fractional part of x & y if (quality == NoiseQuality.Low) { fx0 = x - ix0; } else if (quality == NoiseQuality.Standard) { fx0 = MathEx.SCurve3(x - ix0); } else { fx0 = MathEx.SCurve5(x - ix0); } fx1 = fx0 - 1.0f; ix1 = (ix0 + 1) & 0xff; ix0 = ix0 & 0xff; // Wrap to 0..255 s = FADE(fx0); n0 = GRAD1(m_perm[ix0], fx0); n1 = GRAD1(m_perm[ix1], fx1); return(0.188f * LERP(s, n0, n1)); }
public double Noise2D(double x, double y, NoiseQuality quality) { //returns a noise value between -0.75 and 0.75 int ix0, iy0, ix1, iy1; double fx0, fy0, fx1, fy1, s, t, nx0, nx1, n0, n1; ix0 = NoiseHelper.FastFloor(x); // Integer part of x iy0 = NoiseHelper.FastFloor(y); // Integer part of y // Fractional part of x & y if (quality == NoiseQuality.Low) { fx0 = x - ix0; fy0 = y - iy0; } else if (quality == NoiseQuality.Standard) { fx0 = MathEx.SCurve3(x - ix0); fy0 = MathEx.SCurve3(y - iy0); } else { fx0 = MathEx.SCurve5(x - ix0); fy0 = MathEx.SCurve5(y - iy0); } fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; ix1 = (ix0 + 1) & 0xff; // Wrap to 0..255 iy1 = (iy0 + 1) & 0xff; ix0 = ix0 & 0xff; iy0 = iy0 & 0xff; t = FADE(fy0); s = FADE(fx0); nx0 = GRAD2(m_perm[ix0 + m_perm[iy0]], fx0, fy0); nx1 = GRAD2(m_perm[ix0 + m_perm[iy1]], fx0, fy1); n0 = LERP(t, nx0, nx1); nx0 = GRAD2(m_perm[ix1 + m_perm[iy0]], fx1, fy0); nx1 = GRAD2(m_perm[ix1 + m_perm[iy1]], fx1, fy1); n1 = LERP(t, nx0, nx1); return(0.507f * LERP(s, n0, n1)); }
// 4D simplex Noise public double Noise4D(double x, double y, double z, double w) { // The skewing and unskewing factors are hairy again for the 4D case double F4 = (Math.Sqrt(5.0) - 1.0) / 4.0; double G4 = (5.0 - Math.Sqrt(5.0)) / 20.0; double n0, n1, n2, n3, n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in double s = (x + y + z + w) * F4; // Factor for 4D skewing int i = NoiseHelper.FastFloor(x + s); int j = NoiseHelper.FastFloor(y + s); int k = NoiseHelper.FastFloor(z + s); int l = NoiseHelper.FastFloor(w + s); double t = (i + j + k + l) * G4; // Factor for 4D unskewing double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space double Y0 = j - t; double Z0 = k - t; double W0 = l - t; double x0 = x - X0; // The x,y,z,w distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; double w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // The method below is a good way of finding the ordering of x,y,z,w and // then find the correct traversal order for the simplex we’re in. // First, six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to add up binary bits // for an integer index. int c1 = (x0 > y0) ? 32 : 0; int c2 = (x0 > z0) ? 16 : 0; int c3 = (y0 > z0) ? 8 : 0; int c4 = (x0 > w0) ? 4 : 0; int c5 = (y0 > w0) ? 2 : 0; int c6 = (z0 > w0) ? 1 : 0; int c = c1 + c2 + c3 + c4 + c5 + c6; int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w // impossible. Only the 24 indices which have non-zero entries make any sense. // We use a thresholding to set the coordinates in turn from the largest magnitude. // The number 3 in the "simplex" array is at the position of the largest coordinate. i1 = simplex[c][0] >= 3 ? 1 : 0; j1 = simplex[c][1] >= 3 ? 1 : 0; k1 = simplex[c][2] >= 3 ? 1 : 0; l1 = simplex[c][3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate. i2 = simplex[c][0] >= 2 ? 1 : 0; j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0; l2 = simplex[c][3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate. i3 = simplex[c][0] >= 1 ? 1 : 0; j3 = simplex[c][1] >= 1 ? 1 : 0; k3 = simplex[c][2] >= 1 ? 1 : 0; l3 = simplex[c][3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords double y2 = y0 - j2 + 2.0 * G4; double z2 = z0 - k2 + 2.0 * G4; double w2 = w0 - l2 + 2.0 * G4; double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords double y3 = y0 - j3 + 3.0 * G4; double z3 = z0 - k3 + 3.0 * G4; double w3 = w0 - l3 + 3.0 * G4; double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords double y4 = y0 - 1.0 + 4.0 * G4; double z4 = z0 - 1.0 + 4.0 * G4; double w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; // Calculate the contribution from the five corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) { n0 = 0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) { n1 = 0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) { n2 = 0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) { n3 = 0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) { n4 = 0; } else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return(27.0 * (n0 + n1 + n2 + n3 + n4)); }
// 3D simplex Noise public double Noise3D(double x, double y, double z) { double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in const double F3 = 1.0 / 3.0; double s = (x + y + z) * F3; // Very nice and simple skew factor for 3D int i = NoiseHelper.FastFloor(x + s); int j = NoiseHelper.FastFloor(y + s); int k = NoiseHelper.FastFloor(z + s); const double G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too double t = (i + j + k) * G3; double X0 = i - t; // Unskew the cell origin back to (x,y,z) space double Y0 = j - t; double Z0 = k - t; double x0 = x - X0; // The x,y,z distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords double y2 = y0 - j2 + 2.0 * G3; double z2 = z0 - k2 + 2.0 * G3; double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords double y3 = y0 - 1.0 + 3.0 * G3; double z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = perm[ii + perm[jj + perm[kk]]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12; int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12; // Calculate the contribution from the four corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final Noise value. // The result is scaled to stay just inside [-1,1] return(32.0 * (n0 + n1 + n2 + n3)); }
// 2D simplex Noise public double Noise2D(double x, double y) { double n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in double F2 = 0.5 * (Math.Sqrt(3.0) - 1.0); double s = (x + y) * F2; // Hairy factor for 2D int i = NoiseHelper.FastFloor(x + s); int j = NoiseHelper.FastFloor(y + s); double G2 = (3.0 - Math.Sqrt(3.0)) / 6.0; double t = (i + j) * G2; double X0 = i - t; // Unskew the cell origin back to (x,y) space double Y0 = j - t; double x0 = x - X0; // The x,y distances from the cell origin double y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = perm[ii + perm[jj]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1]] % 12; int gi2 = perm[ii + 1 + perm[jj + 1]] % 12; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final Noise value. // The result is scaled to return values in the interval [-1,1]. return(70.0 * (n0 + n1 + n2)); }
public double Noise3D(double x, double y, double z, NoiseQuality quality) { //returns a noise value between -1.5 and 1.5 int ix0, iy0, ix1, iy1, iz0, iz1; double fx0, fy0, fz0, fx1, fy1, fz1; double s, t, r; double nxy0, nxy1, nx0, nx1, n0, n1; ix0 = NoiseHelper.FastFloor(x); // Integer part of x iy0 = NoiseHelper.FastFloor(y); // Integer part of y iz0 = NoiseHelper.FastFloor(z); // Integer part of z // Fractional part of x, y, z if (quality == NoiseQuality.Low) { fx0 = x - ix0; fy0 = y - iy0; fz0 = z - iz0; } else if (quality == NoiseQuality.Standard) { fx0 = MathEx.SCurve3(x - ix0); fy0 = MathEx.SCurve3(y - iy0); fz0 = MathEx.SCurve3(z - iz0); } else { fx0 = MathEx.SCurve5(x - ix0); fy0 = MathEx.SCurve5(y - iy0); fz0 = MathEx.SCurve5(z - iz0); } fx1 = fx0 - 1.0f; fy1 = fy0 - 1.0f; fz1 = fz0 - 1.0f; ix1 = (ix0 + 1) & 0xff; // Wrap to 0..255 iy1 = (iy0 + 1) & 0xff; iz1 = (iz0 + 1) & 0xff; ix0 = ix0 & 0xff; iy0 = iy0 & 0xff; iz0 = iz0 & 0xff; r = FADE(fz0); t = FADE(fy0); s = FADE(fx0); nxy0 = GRAD3(m_perm[ix0 + m_perm[iy0 + m_perm[iz0]]], fx0, fy0, fz0); nxy1 = GRAD3(m_perm[ix0 + m_perm[iy0 + m_perm[iz1]]], fx0, fy0, fz1); nx0 = LERP(r, nxy0, nxy1); nxy0 = GRAD3(m_perm[ix0 + m_perm[iy1 + m_perm[iz0]]], fx0, fy1, fz0); nxy1 = GRAD3(m_perm[ix0 + m_perm[iy1 + m_perm[iz1]]], fx0, fy1, fz1); nx1 = LERP(r, nxy0, nxy1); n0 = LERP(t, nx0, nx1); nxy0 = GRAD3(m_perm[ix1 + m_perm[iy0 + m_perm[iz0]]], fx1, fy0, fz0); nxy1 = GRAD3(m_perm[ix1 + m_perm[iy0 + m_perm[iz1]]], fx1, fy0, fz1); nx0 = LERP(r, nxy0, nxy1); nxy0 = GRAD3(m_perm[ix1 + m_perm[iy1 + m_perm[iz0]]], fx1, fy1, fz0); nxy1 = GRAD3(m_perm[ix1 + m_perm[iy1 + m_perm[iz1]]], fx1, fy1, fz1); nx1 = LERP(r, nxy0, nxy1); n1 = LERP(t, nx0, nx1); return(0.936f * LERP(s, n0, n1)); }