public override ECFieldElement Multiply(ECFieldElement b) { uint[] z = Nat256.Create(); Curve25519Field.Multiply(x, ((Curve25519FieldElement)b).x, z); return(new Curve25519FieldElement(z)); }
public override ECFieldElement Subtract(ECFieldElement b) { uint[] z = Nat256.Create(); Curve25519Field.Subtract(x, ((Curve25519FieldElement)b).x, z); return(new Curve25519FieldElement(z)); }
/** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Q == 8m + 5, so we use Pocklington's method for this case. * * First, raise this element to the exponent 2^252 - 2^1 (i.e. m + 1) * * Breaking up the exponent's binary representation into "repunits", we get: * { 251 1s } { 1 0s } * * Therefore we need an addition chain containing 251 (the lengths of the repunits) * We use: 1, 2, 3, 4, 7, 11, 15, 30, 60, 120, 131, [251] */ uint[] x1 = this.x; if (Nat256.IsZero(x1) || Nat256.IsOne(x1)) { return(this); } uint[] x2 = Nat256.Create(); Curve25519Field.Square(x1, x2); Curve25519Field.Multiply(x2, x1, x2); uint[] x3 = x2; Curve25519Field.Square(x2, x3); Curve25519Field.Multiply(x3, x1, x3); uint[] x4 = Nat256.Create(); Curve25519Field.Square(x3, x4); Curve25519Field.Multiply(x4, x1, x4); uint[] x7 = Nat256.Create(); Curve25519Field.SquareN(x4, 3, x7); Curve25519Field.Multiply(x7, x3, x7); uint[] x11 = x3; Curve25519Field.SquareN(x7, 4, x11); Curve25519Field.Multiply(x11, x4, x11); uint[] x15 = x7; Curve25519Field.SquareN(x11, 4, x15); Curve25519Field.Multiply(x15, x4, x15); uint[] x30 = x4; Curve25519Field.SquareN(x15, 15, x30); Curve25519Field.Multiply(x30, x15, x30); uint[] x60 = x15; Curve25519Field.SquareN(x30, 30, x60); Curve25519Field.Multiply(x60, x30, x60); uint[] x120 = x30; Curve25519Field.SquareN(x60, 60, x120); Curve25519Field.Multiply(x120, x60, x120); uint[] x131 = x60; Curve25519Field.SquareN(x120, 11, x131); Curve25519Field.Multiply(x131, x11, x131); uint[] x251 = x11; Curve25519Field.SquareN(x131, 120, x251); Curve25519Field.Multiply(x251, x120, x251); uint[] t1 = x251; Curve25519Field.Square(t1, t1); uint[] t2 = x120; Curve25519Field.Square(t1, t2); if (Nat256.Eq(x1, t2)) { return(new Curve25519FieldElement(t1)); } /* * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess, * which is ((4x)^(m + 1))/2 mod Q */ Curve25519Field.Multiply(t1, PRECOMP_POW2, t1); Curve25519Field.Square(t1, t2); if (Nat256.Eq(x1, t2)) { return(new Curve25519FieldElement(t1)); } return(null); }
public override ECFieldElement AddOne() { uint[] z = Nat256.Create(); Curve25519Field.AddOne(x, z); return(new Curve25519FieldElement(z)); }
public override ECPoint Add(ECPoint b) { if (this.IsInfinity) { return(b); } if (b.IsInfinity) { return(this); } if (this == b) { return(Twice()); } ECCurve curve = this.Curve; Curve25519FieldElement X1 = (Curve25519FieldElement)this.RawXCoord, Y1 = (Curve25519FieldElement)this.RawYCoord, Z1 = (Curve25519FieldElement)this.RawZCoords[0]; Curve25519FieldElement X2 = (Curve25519FieldElement)b.RawXCoord, Y2 = (Curve25519FieldElement)b.RawYCoord, Z2 = (Curve25519FieldElement)b.RawZCoords[0]; uint c; uint[] tt1 = Nat256.CreateExt(); uint[] t2 = Nat256.Create(); uint[] t3 = Nat256.Create(); uint[] t4 = Nat256.Create(); bool Z1IsOne = Z1.IsOne; uint[] U2, S2; if (Z1IsOne) { U2 = X2.x; S2 = Y2.x; } else { S2 = t3; Curve25519Field.Square(Z1.x, S2); U2 = t2; Curve25519Field.Multiply(S2, X2.x, U2); Curve25519Field.Multiply(S2, Z1.x, S2); Curve25519Field.Multiply(S2, Y2.x, S2); } bool Z2IsOne = Z2.IsOne; uint[] U1, S1; if (Z2IsOne) { U1 = X1.x; S1 = Y1.x; } else { S1 = t4; Curve25519Field.Square(Z2.x, S1); U1 = tt1; Curve25519Field.Multiply(S1, X1.x, U1); Curve25519Field.Multiply(S1, Z2.x, S1); Curve25519Field.Multiply(S1, Y1.x, S1); } uint[] H = Nat256.Create(); Curve25519Field.Subtract(U1, U2, H); uint[] R = t2; Curve25519Field.Subtract(S1, S2, R); // Check if b == this or b == -this if (Nat256.IsZero(H)) { if (Nat256.IsZero(R)) { // this == b, i.e. this must be doubled return(this.Twice()); } // this == -b, i.e. the result is the point at infinity return(curve.Infinity); } uint[] HSquared = Nat256.Create(); Curve25519Field.Square(H, HSquared); uint[] G = Nat256.Create(); Curve25519Field.Multiply(HSquared, H, G); uint[] V = t3; Curve25519Field.Multiply(HSquared, U1, V); Curve25519Field.Negate(G, G); Nat256.Mul(S1, G, tt1); c = Nat256.AddBothTo(V, V, G); Curve25519Field.Reduce27(c, G); Curve25519FieldElement X3 = new Curve25519FieldElement(t4); Curve25519Field.Square(R, X3.x); Curve25519Field.Subtract(X3.x, G, X3.x); Curve25519FieldElement Y3 = new Curve25519FieldElement(G); Curve25519Field.Subtract(V, X3.x, Y3.x); Curve25519Field.MultiplyAddToExt(Y3.x, R, tt1); Curve25519Field.Reduce(tt1, Y3.x); Curve25519FieldElement Z3 = new Curve25519FieldElement(H); if (!Z1IsOne) { Curve25519Field.Multiply(Z3.x, Z1.x, Z3.x); } if (!Z2IsOne) { Curve25519Field.Multiply(Z3.x, Z2.x, Z3.x); } uint[] Z3Squared = (Z1IsOne && Z2IsOne) ? HSquared : null; // TODO If the result will only be used in a subsequent addition, we don't need W3 Curve25519FieldElement W3 = CalculateJacobianModifiedW((Curve25519FieldElement)Z3, Z3Squared); ECFieldElement[] zs = new ECFieldElement[] { Z3, W3 }; return(new Curve25519Point(curve, X3, Y3, zs, IsCompressed)); }