public void TestFoldIn() { var afm = new SigmoidCombinedAsymmetricFactorModel() { Ratings = TestUtils.CreateRatings() }; afm.Train(); var user_ratings = new List<Tuple<int, float>>(); user_ratings.Add(new Tuple<int, float>(0, 4.0f)); var candidate_items = new List<int> { 0, 1 }; // have a known and an unknown item var results = afm.ScoreItems(user_ratings, candidate_items); Assert.AreEqual(2, results.Count); }
public void TestDecay() { var afm = new SigmoidCombinedAsymmetricFactorModel() { LearnRate = 1.0f, Decay = 0.5f, NumIter = 1, Ratings = TestUtils.CreateRatings() }; afm.Train(); Assert.AreEqual(0.5f, afm.current_learnrate); afm.Iterate(); Assert.AreEqual(0.25f, afm.current_learnrate); }
public void TestDefaultBehaviorIsNoDecay() { var afm = new SigmoidCombinedAsymmetricFactorModel() { LearnRate = 1.1f, NumIter = 10, Ratings = TestUtils.CreateRatings() }; afm.Train(); Assert.AreEqual(1.1f, afm.current_learnrate); }