/// <summary> /// Setup the layer. /// </summary> /// <param name="colBottom">Specifies the collection of bottom (input) Blobs.</param> /// <param name="colTop">Specifies the collection of top (output) Blobs.</param> public override void LayerSetUp(BlobCollection <T> colBottom, BlobCollection <T> colTop) { base.LayerSetUp(colBottom, colTop); // Internal softmax layer. LayerParameter softmax_param = new LayerParameter(LayerParameter.LayerType.SOFTMAX); softmax_param.softmax_param.axis = m_param.infogain_loss_param.axis; softmax_param.loss_weight.Clear(); softmax_param.loss_weight.Add(1); m_softmaxLayer = new SoftmaxLayer <T>(m_cuda, m_log, softmax_param); m_colSoftmaxBottomVec.Clear(); m_colSoftmaxBottomVec.Add(colBottom[0]); m_colSoftmaxTopVec.Clear(); m_colSoftmaxTopVec.Add(m_blobProb); m_softmaxLayer.Setup(m_colSoftmaxBottomVec, m_colSoftmaxTopVec); // ignore label. m_nIgnoreLabel = m_param.loss_param.ignore_label; // normalization m_log.CHECK(!m_param.loss_param.normalize, "normalize is drepreciated, use 'normalization'."); m_normalization = m_param.loss_param.normalization; // matrix H if (colBottom.Count < 3) { m_log.CHECK(m_param.infogain_loss_param.source != null, "Infogain matrix source must be specified."); PersistCaffe <T> persist = new PersistCaffe <T>(m_log, true); BlobProto blobProto = persist.LoadBlobProto(m_param.infogain_loss_param.source, 1); m_blobInfoGain.FromProto(blobProto); } }
/// <summary> /// The SoftmaxCrossEntropyLayer constructor. /// </summary> /// <param name="cuda">Specifies the CudaDnn connection to Cuda.</param> /// <param name="log">Specifies the Log for output.</param> /// <param name="p">Specifies the LayerParameter of type SOFTMAXCROSSENTROPY_LOSS. /// </param> public SoftmaxCrossEntropyLossLayer(CudaDnn <T> cuda, Log log, LayerParameter p) : base(cuda, log, p) { m_type = LayerParameter.LayerType.SOFTMAXCROSSENTROPY_LOSS; m_blobSoftmaxOutput = new Blob <T>(cuda, log); m_blobSoftmaxOutput.Name = m_param.name + " softmax out"; m_blobLoss = new Blob <T>(cuda, log); m_blobLoss.Name = m_param.name + " loss"; LayerParameter param_softmax = p.Clone(false); param_softmax.loss_weight.Clear(); m_softmaxLayer = new SoftmaxLayer <T>(cuda, log, param_softmax); }