public virtual int GetSelectedCipherSuite() { /* * TODO RFC 5246 7.4.3. In order to negotiate correctly, the server MUST check any candidate * cipher suites against the "signature_algorithms" extension before selecting them. This is * somewhat inelegant but is a compromise designed to minimize changes to the original * cipher suite design. */ /* * RFC 4429 5.1. A server that receives a ClientHello containing one or both of these * extensions MUST use the client's enumerated capabilities to guide its selection of an * appropriate cipher suite. One of the proposed ECC cipher suites must be negotiated only * if the server can successfully complete the handshake while using the curves and point * formats supported by the client [...]. */ bool eccCipherSuitesEnabled = SupportsClientEccCapabilities(this.mNamedCurves, this.mClientECPointFormats); int[] cipherSuites = GetCipherSuites(); for (int i = 0; i < cipherSuites.Length; ++i) { int cipherSuite = cipherSuites[i]; if (Arrays.Contains(this.mOfferedCipherSuites, cipherSuite) && (eccCipherSuitesEnabled || !TlsEccUtilities.IsEccCipherSuite(cipherSuite)) && TlsUtilities.IsValidCipherSuiteForVersion(cipherSuite, mServerVersion)) { return(this.mSelectedCipherSuite = cipherSuite); } } throw new TlsFatalAlert(AlertDescription.handshake_failure); }
protected virtual byte[] GenerateOtherSecret(int pskLength) { if (this.mKeyExchange == KeyExchangeAlgorithm.DHE_PSK) { if (mDHAgreePrivateKey != null) { return(TlsDHUtilities.CalculateDHBasicAgreement(mDHAgreePublicKey, mDHAgreePrivateKey)); } throw new TlsFatalAlert(AlertDescription.internal_error); } if (this.mKeyExchange == KeyExchangeAlgorithm.ECDHE_PSK) { if (mECAgreePrivateKey != null) { return(TlsEccUtilities.CalculateECDHBasicAgreement(mECAgreePublicKey, mECAgreePrivateKey)); } throw new TlsFatalAlert(AlertDescription.internal_error); } if (this.mKeyExchange == KeyExchangeAlgorithm.RSA_PSK) { return(this.mPremasterSecret); } return(new byte[pskLength]); }
protected virtual bool SupportsClientEccCapabilities(int[] namedCurves, byte[] ecPointFormats) { // NOTE: BC supports all the current set of point formats so we don't check them here if (namedCurves == null) { /* * RFC 4492 4. A client that proposes ECC cipher suites may choose not to include these * extensions. In this case, the server is free to choose any one of the elliptic curves * or point formats [...]. */ return(TlsEccUtilities.HasAnySupportedNamedCurves()); } for (int i = 0; i < namedCurves.Length; ++i) { int namedCurve = namedCurves[i]; if (NamedCurve.IsValid(namedCurve) && (!NamedCurve.RefersToASpecificNamedCurve(namedCurve) || TlsEccUtilities.IsSupportedNamedCurve(namedCurve))) { return(true); } } return(false); }
public override byte[] GenerateServerKeyExchange() { DigestInputBuffer buf = new DigestInputBuffer(); this.mECAgreePrivateKey = TlsEccUtilities.GenerateEphemeralServerKeyExchange(mContext.SecureRandom, mNamedCurves, mClientECPointFormats, buf); /* * RFC 5246 4.7. digitally-signed element needs SignatureAndHashAlgorithm from TLS 1.2 */ SignatureAndHashAlgorithm signatureAndHashAlgorithm = TlsUtilities.GetSignatureAndHashAlgorithm( mContext, mServerCredentials); IDigest d = TlsUtilities.CreateHash(signatureAndHashAlgorithm); SecurityParameters securityParameters = mContext.SecurityParameters; d.BlockUpdate(securityParameters.clientRandom, 0, securityParameters.clientRandom.Length); d.BlockUpdate(securityParameters.serverRandom, 0, securityParameters.serverRandom.Length); buf.UpdateDigest(d); byte[] hash = DigestUtilities.DoFinal(d); byte[] signature = mServerCredentials.GenerateCertificateSignature(hash); DigitallySigned signed_params = new DigitallySigned(signatureAndHashAlgorithm, signature); signed_params.Encode(buf); return(buf.ToArray()); }
public virtual void ProcessServerExtensions(IDictionary serverExtensions) { /* * TlsProtocol implementation validates that any server extensions received correspond to * client extensions sent. By default, we don't send any, and this method is not called. */ if (serverExtensions != null) { /* * RFC 5246 7.4.1.4.1. Servers MUST NOT send this extension. */ CheckForUnexpectedServerExtension(serverExtensions, ExtensionType.signature_algorithms); CheckForUnexpectedServerExtension(serverExtensions, ExtensionType.elliptic_curves); if (TlsEccUtilities.IsEccCipherSuite(this.mSelectedCipherSuite)) { this.mServerECPointFormats = TlsEccUtilities.GetSupportedPointFormatsExtension(serverExtensions); } else { CheckForUnexpectedServerExtension(serverExtensions, ExtensionType.ec_point_formats); } } }
public override void GenerateClientKeyExchange(Stream output) { if (mAgreementCredentials == null) { this.mECAgreePrivateKey = TlsEccUtilities.GenerateEphemeralClientKeyExchange(mContext.SecureRandom, mServerECPointFormats, mECAgreePublicKey.Parameters, output); } }
public override byte[] GeneratePremasterSecret() { if (mAgreementCredentials != null) { return(mAgreementCredentials.GenerateAgreement(mECAgreePublicKey)); } if (mECAgreePrivateKey != null) { return(TlsEccUtilities.CalculateECDHBasicAgreement(mECAgreePublicKey, mECAgreePrivateKey)); } throw new TlsFatalAlert(AlertDescription.internal_error); }
public override void ProcessClientKeyExchange(Stream input) { if (mECAgreePublicKey != null) { // For ecdsa_fixed_ecdh and rsa_fixed_ecdh, the key arrived in the client certificate return; } byte[] point = TlsUtilities.ReadOpaque8(input); ECDomainParameters curve_params = this.mECAgreePrivateKey.Parameters; this.mECAgreePublicKey = TlsEccUtilities.ValidateECPublicKey(TlsEccUtilities.DeserializeECPublicKey( mServerECPointFormats, curve_params, point)); }
protected virtual bool AllowUnexpectedServerExtension(int extensionType, byte[] extensionData) { switch (extensionType) { case ExtensionType.elliptic_curves: /* * Exception added based on field reports that some servers do send this, although the * Supported Elliptic Curves Extension is clearly intended to be client-only. If * present, we still require that it is a valid EllipticCurveList. */ TlsEccUtilities.ReadSupportedEllipticCurvesExtension(extensionData); return(true); default: return(false); } }
public virtual IDictionary GetClientExtensions() { IDictionary clientExtensions = null; ProtocolVersion clientVersion = mContext.ClientVersion; /* * RFC 5246 7.4.1.4.1. Note: this extension is not meaningful for TLS versions prior to 1.2. * Clients MUST NOT offer it if they are offering prior versions. */ if (TlsUtilities.IsSignatureAlgorithmsExtensionAllowed(clientVersion)) { // TODO Provide a way for the user to specify the acceptable hash/signature algorithms. this.mSupportedSignatureAlgorithms = TlsUtilities.GetDefaultSupportedSignatureAlgorithms(); clientExtensions = TlsExtensionsUtilities.EnsureExtensionsInitialised(clientExtensions); TlsUtilities.AddSignatureAlgorithmsExtension(clientExtensions, mSupportedSignatureAlgorithms); } if (TlsEccUtilities.ContainsEccCipherSuites(GetCipherSuites())) { /* * RFC 4492 5.1. A client that proposes ECC cipher suites in its ClientHello message * appends these extensions (along with any others), enumerating the curves it supports * and the point formats it can parse. Clients SHOULD send both the Supported Elliptic * Curves Extension and the Supported Point Formats Extension. */ /* * TODO Could just add all the curves since we support them all, but users may not want * to use unnecessarily large fields. Need configuration options. */ this.mNamedCurves = new int[] { NamedCurve.secp256r1, NamedCurve.secp384r1 }; this.mClientECPointFormats = new byte[] { ECPointFormat.uncompressed, ECPointFormat.ansiX962_compressed_prime, ECPointFormat.ansiX962_compressed_char2, }; clientExtensions = TlsExtensionsUtilities.EnsureExtensionsInitialised(clientExtensions); TlsEccUtilities.AddSupportedEllipticCurvesExtension(clientExtensions, mNamedCurves); TlsEccUtilities.AddSupportedPointFormatsExtension(clientExtensions, mClientECPointFormats); } return(clientExtensions); }
public override void ProcessServerCertificate(Certificate serverCertificate) { if (serverCertificate.IsEmpty) { throw new TlsFatalAlert(AlertDescription.bad_certificate); } X509CertificateStructure x509Cert = serverCertificate.GetCertificateAt(0); SubjectPublicKeyInfo keyInfo = x509Cert.SubjectPublicKeyInfo; try { this.mServerPublicKey = PublicKeyFactory.CreateKey(keyInfo); } catch (Exception e) { throw new TlsFatalAlert(AlertDescription.unsupported_certificate, e); } if (mTlsSigner == null) { try { this.mECAgreePublicKey = TlsEccUtilities.ValidateECPublicKey((ECPublicKeyParameters)this.mServerPublicKey); } catch (InvalidCastException e) { throw new TlsFatalAlert(AlertDescription.certificate_unknown, e); } TlsUtilities.ValidateKeyUsage(x509Cert, KeyUsage.KeyAgreement); } else { if (!mTlsSigner.IsValidPublicKey(this.mServerPublicKey)) { throw new TlsFatalAlert(AlertDescription.certificate_unknown); } TlsUtilities.ValidateKeyUsage(x509Cert, KeyUsage.DigitalSignature); } base.ProcessServerCertificate(serverCertificate); }
public virtual void ProcessClientExtensions(IDictionary clientExtensions) { this.mClientExtensions = clientExtensions; if (clientExtensions != null) { this.mEncryptThenMacOffered = TlsExtensionsUtilities.HasEncryptThenMacExtension(clientExtensions); this.mMaxFragmentLengthOffered = TlsExtensionsUtilities.GetMaxFragmentLengthExtension(clientExtensions); if (mMaxFragmentLengthOffered >= 0 && !MaxFragmentLength.IsValid((byte)mMaxFragmentLengthOffered)) { throw new TlsFatalAlert(AlertDescription.illegal_parameter); } this.mTruncatedHMacOffered = TlsExtensionsUtilities.HasTruncatedHMacExtension(clientExtensions); this.mSupportedSignatureAlgorithms = TlsUtilities.GetSignatureAlgorithmsExtension(clientExtensions); if (this.mSupportedSignatureAlgorithms != null) { /* * RFC 5246 7.4.1.4.1. Note: this extension is not meaningful for TLS versions prior * to 1.2. Clients MUST NOT offer it if they are offering prior versions. */ if (!TlsUtilities.IsSignatureAlgorithmsExtensionAllowed(mClientVersion)) { throw new TlsFatalAlert(AlertDescription.illegal_parameter); } } this.mNamedCurves = TlsEccUtilities.GetSupportedEllipticCurvesExtension(clientExtensions); this.mClientECPointFormats = TlsEccUtilities.GetSupportedPointFormatsExtension(clientExtensions); } /* * RFC 4429 4. The client MUST NOT include these extensions in the ClientHello message if it * does not propose any ECC cipher suites. * * NOTE: This was overly strict as there may be ECC cipher suites that we don't recognize. * Also, draft-ietf-tls-negotiated-ff-dhe will be overloading the 'elliptic_curves' * extension to explicitly allow FFDHE (i.e. non-ECC) groups. */ //if (!this.mEccCipherSuitesOffered && (this.mNamedCurves != null || this.mClientECPointFormats != null)) // throw new TlsFatalAlert(AlertDescription.illegal_parameter); }
// IDictionary is (Int32 -> byte[]) public virtual IDictionary GetServerExtensions() { if (this.mEncryptThenMacOffered && AllowEncryptThenMac) { /* * RFC 7366 3. If a server receives an encrypt-then-MAC request extension from a client * and then selects a stream or Authenticated Encryption with Associated Data (AEAD) * ciphersuite, it MUST NOT send an encrypt-then-MAC response extension back to the * client. */ if (TlsUtilities.IsBlockCipherSuite(this.mSelectedCipherSuite)) { TlsExtensionsUtilities.AddEncryptThenMacExtension(CheckServerExtensions()); } } if (this.mMaxFragmentLengthOffered >= 0 && TlsUtilities.IsValidUint8(mMaxFragmentLengthOffered) && MaxFragmentLength.IsValid((byte)mMaxFragmentLengthOffered)) { TlsExtensionsUtilities.AddMaxFragmentLengthExtension(CheckServerExtensions(), (byte)mMaxFragmentLengthOffered); } if (this.mTruncatedHMacOffered && AllowTruncatedHMac) { TlsExtensionsUtilities.AddTruncatedHMacExtension(CheckServerExtensions()); } if (this.mClientECPointFormats != null && TlsEccUtilities.IsEccCipherSuite(this.mSelectedCipherSuite)) { /* * RFC 4492 5.2. A server that selects an ECC cipher suite in response to a ClientHello * message including a Supported Point Formats Extension appends this extension (along * with others) to its ServerHello message, enumerating the point formats it can parse. */ this.mServerECPointFormats = new byte[] { ECPointFormat.uncompressed, ECPointFormat.ansiX962_compressed_prime, ECPointFormat.ansiX962_compressed_char2, }; TlsEccUtilities.AddSupportedPointFormatsExtension(CheckServerExtensions(), mServerECPointFormats); } return(mServerExtensions); }
public override void GenerateClientKeyExchange(Stream output) { if (mPskIdentityHint == null) { mPskIdentity.SkipIdentityHint(); } else { mPskIdentity.NotifyIdentityHint(mPskIdentityHint); } byte[] psk_identity = mPskIdentity.GetPskIdentity(); if (psk_identity == null) { throw new TlsFatalAlert(AlertDescription.internal_error); } this.mPsk = mPskIdentity.GetPsk(); if (mPsk == null) { throw new TlsFatalAlert(AlertDescription.internal_error); } TlsUtilities.WriteOpaque16(psk_identity, output); mContext.SecurityParameters.pskIdentity = psk_identity; if (this.mKeyExchange == KeyExchangeAlgorithm.DHE_PSK) { this.mDHAgreePrivateKey = TlsDHUtilities.GenerateEphemeralClientKeyExchange(mContext.SecureRandom, mDHParameters, output); } else if (this.mKeyExchange == KeyExchangeAlgorithm.ECDHE_PSK) { this.mECAgreePrivateKey = TlsEccUtilities.GenerateEphemeralClientKeyExchange(mContext.SecureRandom, mServerECPointFormats, mECAgreePublicKey.Parameters, output); } else if (this.mKeyExchange == KeyExchangeAlgorithm.RSA_PSK) { this.mPremasterSecret = TlsRsaUtilities.GenerateEncryptedPreMasterSecret(mContext, this.mRsaServerPublicKey, output); } }
public override void ProcessClientKeyExchange(Stream input) { byte[] psk_identity = TlsUtilities.ReadOpaque16(input); this.mPsk = mPskIdentityManager.GetPsk(psk_identity); if (mPsk == null) { throw new TlsFatalAlert(AlertDescription.unknown_psk_identity); } mContext.SecurityParameters.pskIdentity = psk_identity; if (this.mKeyExchange == KeyExchangeAlgorithm.DHE_PSK) { BigInteger Yc = TlsDHUtilities.ReadDHParameter(input); this.mDHAgreePublicKey = TlsDHUtilities.ValidateDHPublicKey(new DHPublicKeyParameters(Yc, mDHParameters)); } else if (this.mKeyExchange == KeyExchangeAlgorithm.ECDHE_PSK) { byte[] point = TlsUtilities.ReadOpaque8(input); ECDomainParameters curve_params = this.mECAgreePrivateKey.Parameters; this.mECAgreePublicKey = TlsEccUtilities.ValidateECPublicKey(TlsEccUtilities.DeserializeECPublicKey( mServerECPointFormats, curve_params, point)); } else if (this.mKeyExchange == KeyExchangeAlgorithm.RSA_PSK) { byte[] encryptedPreMasterSecret; if (TlsUtilities.IsSsl(mContext)) { // TODO Do any SSLv3 clients actually include the length? encryptedPreMasterSecret = Streams.ReadAll(input); } else { encryptedPreMasterSecret = TlsUtilities.ReadOpaque16(input); } this.mPremasterSecret = mServerCredentials.DecryptPreMasterSecret(encryptedPreMasterSecret); } }
public override void ProcessServerKeyExchange(Stream input) { this.mPskIdentityHint = TlsUtilities.ReadOpaque16(input); if (this.mKeyExchange == KeyExchangeAlgorithm.DHE_PSK) { ServerDHParams serverDHParams = ServerDHParams.Parse(input); this.mDHAgreePublicKey = TlsDHUtilities.ValidateDHPublicKey(serverDHParams.PublicKey); this.mDHParameters = mDHAgreePublicKey.Parameters; } else if (this.mKeyExchange == KeyExchangeAlgorithm.ECDHE_PSK) { ECDomainParameters ecParams = TlsEccUtilities.ReadECParameters(mNamedCurves, mClientECPointFormats, input); byte[] point = TlsUtilities.ReadOpaque8(input); this.mECAgreePublicKey = TlsEccUtilities.ValidateECPublicKey(TlsEccUtilities.DeserializeECPublicKey( mClientECPointFormats, ecParams, point)); } }
public override byte[] GenerateServerKeyExchange() { this.mPskIdentityHint = mPskIdentityManager.GetHint(); if (this.mPskIdentityHint == null && !RequiresServerKeyExchange) { return(null); } MemoryStream buf = new MemoryStream(); if (this.mPskIdentityHint == null) { TlsUtilities.WriteOpaque16(TlsUtilities.EmptyBytes, buf); } else { TlsUtilities.WriteOpaque16(this.mPskIdentityHint, buf); } if (this.mKeyExchange == KeyExchangeAlgorithm.DHE_PSK) { if (this.mDHParameters == null) { throw new TlsFatalAlert(AlertDescription.internal_error); } this.mDHAgreePrivateKey = TlsDHUtilities.GenerateEphemeralServerKeyExchange(mContext.SecureRandom, this.mDHParameters, buf); } else if (this.mKeyExchange == KeyExchangeAlgorithm.ECDHE_PSK) { this.mECAgreePrivateKey = TlsEccUtilities.GenerateEphemeralServerKeyExchange(mContext.SecureRandom, mNamedCurves, mClientECPointFormats, buf); } return(buf.ToArray()); }
public override void ProcessServerKeyExchange(Stream input) { SecurityParameters securityParameters = mContext.SecurityParameters; SignerInputBuffer buf = new SignerInputBuffer(); Stream teeIn = new TeeInputStream(input, buf); ECDomainParameters curve_params = TlsEccUtilities.ReadECParameters(mNamedCurves, mClientECPointFormats, teeIn); byte[] point = TlsUtilities.ReadOpaque8(teeIn); DigitallySigned signed_params = ParseSignature(input); ISigner signer = InitVerifyer(mTlsSigner, signed_params.Algorithm, securityParameters); buf.UpdateSigner(signer); if (!signer.VerifySignature(signed_params.Signature)) { throw new TlsFatalAlert(AlertDescription.decrypt_error); } this.mECAgreePublicKey = TlsEccUtilities.ValidateECPublicKey(TlsEccUtilities.DeserializeECPublicKey( mClientECPointFormats, curve_params, point)); }
public virtual void NotifyOfferedCipherSuites(int[] offeredCipherSuites) { this.mOfferedCipherSuites = offeredCipherSuites; this.mEccCipherSuitesOffered = TlsEccUtilities.ContainsEccCipherSuites(this.mOfferedCipherSuites); }