// Prepare input data for prediction. public static void PreparePredictor(ref NetworkContainer container, ref ImageNetworkPredictSettings settings) { TestForErrors(ref settings); EncogWrapper.LoadNetworkFromFS(ref container, settings.trainedNetwork); List <ICSVFilter> baseFilters = new List <ICSVFilter>(1); ICSVFilter quaternions = new CSVEvenColumnFilter(); baseFilters.Add(quaternions); // Setup loader. CSVLoaderSettings CSVSettings = new CSVLoaderSettings { filePath = settings.predictData, trimUp = 1, trimDown = 0, filters = baseFilters }; var data = CSVLoader <Vector3> .LoadData(ref CSVSettings); // Initialize image Transformer. ImageTransformerSettings imageSettings = new ImageTransformerSettings { focusJoints = (LeapMotionJoint[])Enum.GetValues(typeof(LeapMotionJoint)), samples = data, size = settings.imgSize }; ImageTransformer imageTransformer = new ImageTransformer(); if (settings.predictSettings.threshold.Equals(null)) { settings.predictSettings = new EncogPredictSettings { threshold = 0.9 }; } settings.predictSettings.data = imageTransformer.GetNeuralInput(imageSettings); if (settings.predictSettings.data.Length != container.network.InputCount) { throw new NoNetworkMatchException("Sample count doesn't match network input count."); } }
// Convert data from a CSV file to the actual input array for the network. private static void ComputeData( uint sampleCount, string inputDataDirectory, ref double[][] outputData, ref double[][] outputAnswers, double outputValue, int index) { DirectoryInfo inputDirectory = new DirectoryInfo(inputDataDirectory); foreach (var file in inputDirectory.GetFiles("*.csv")) { List <ICSVFilter> baseFilters = new List <ICSVFilter>(1); ICSVFilter quaternions = new CSVEvenColumnFilter(); baseFilters.Add(quaternions); // Setup loader. CSVLoaderSettings settings = new CSVLoaderSettings { filePath = file.FullName, trimUp = 1, trimDown = 0, filters = baseFilters }; var data = CSVLoader <Vector3> .LoadData(ref settings); // Initialize image Transformer. ImageTransformerSettings imageSettings = new ImageTransformerSettings { focusJoints = (LeapMotionJoint[])Enum.GetValues(typeof(LeapMotionJoint)), samples = data, size = sampleCount }; ImageTransformer imageTransformer = new ImageTransformer(); BaseTrainHelper.Project1DInto2D( imageTransformer.GetNeuralInput(imageSettings), ref outputData, index); // Set answer to given value. outputAnswers[index] = new double[] { outputValue }; index++; } }
public static void PreparePredictor(ref NetworkContainer container, ref CountNetworkPredictSettings settings) { TestForErrors(ref settings); EncogWrapper.LoadNetworkFromFS(ref container, settings.trainedNetwork); List <ICSVFilter> baseFilters = new List <ICSVFilter>(1); ICSVFilter quaternions = new CSVEvenColumnFilter(); baseFilters.Add(quaternions); // Setup loader. CSVLoaderSettings CSVSettings = new CSVLoaderSettings { filePath = settings.predictData, trimUp = 1, trimDown = 0, filters = baseFilters }; var data = CSVLoader <Vector3> .LoadData(ref CSVSettings); // Initialize CountBased Transformer settings. IntervalBasedTransformerSettings countSettings = new IntervalBasedTransformerSettings { sampleList = data, count = settings.sampleCount }; CountBasedTransformer countTransformer = new CountBasedTransformer(); if (settings.predictSettings.threshold.Equals(null)) { settings.predictSettings = new EncogPredictSettings { threshold = 0.9 }; } settings.predictSettings.data = countTransformer.GetNeuralInput(countSettings); if (settings.predictSettings.data.Length != container.network.InputCount) { throw new NoNetworkMatchException("Sample count doesn't match network input count."); } }
private static void ComputeData( uint networkInputSize, string inputDataDirectory, ref double[][] outputData, ref double[][] outputAnswers, double outputValue, int index) { DirectoryInfo inputDirectory = new DirectoryInfo(inputDataDirectory); foreach (var file in inputDirectory.GetFiles("*.csv")) { List <ICSVFilter> baseFilters = new List <ICSVFilter>(1); ICSVFilter quaternions = new CSVEvenColumnFilter(); baseFilters.Add(quaternions); // Setup loader. CSVLoaderSettings settings = new CSVLoaderSettings { filePath = file.FullName, trimUp = 1, trimDown = 0, filters = baseFilters }; var data = CSVLoader <Vector3> .LoadData(ref settings); // Initialize CountBased Transformer settings. IntervalBasedTransformerSettings countSettings = new IntervalBasedTransformerSettings { sampleList = data, count = networkInputSize }; CountBasedTransformer countTransformer = new CountBasedTransformer(); BaseTrainHelper.Project1DInto2D( countTransformer.GetNeuralInput(countSettings), ref outputData, index); // Set answer to given value. outputAnswers[index] = new double[] { outputValue }; index++; } }