private float freq; //prhase frequency in current doc as computed by phraseFreq(). internal PhraseScorer(Weight weight, TermPositions[] tps, int[] offsets, Similarity similarity, byte[] norms) : base(similarity) { this.norms = norms; this.weight = weight; this.value_Renamed = weight.GetValue(); // convert tps to a list of phrase positions. // note: phrase-position differs from term-position in that its position // reflects the phrase offset: pp.pos = tp.pos - offset. // this allows to easily identify a matching (exact) phrase // when all PhrasePositions have exactly the same position. for (int i = 0; i < tps.Length; i++) { PhrasePositions pp = new PhrasePositions(tps[i], offsets[i]); if (last != null) { // add next to end of list last.next = pp; } else { first = pp; } last = pp; } pq = new PhraseQueue(tps.Length); // construct empty pq first.doc = -1; }
internal MatchAllScorer(MatchAllDocsQuery enclosingInstance, IndexReader reader, Similarity similarity, Weight w, byte[] norms) : base(similarity) { InitBlock(enclosingInstance); this.termDocs = reader.TermDocs(null); score = w.GetValue(); this.norms = norms; }
internal MatchAllScorer(MatchAllDocsQuery enclosingInstance, IndexReader reader, Similarity similarity, Weight w, byte[] norms):base(similarity) { InitBlock(enclosingInstance); this.termDocs = reader.TermDocs(null); score = w.GetValue(); this.norms = norms; }
private float freq; //prhase frequency in current doc as computed by phraseFreq(). internal PhraseScorer(Weight weight, TermPositions[] tps, int[] offsets, Similarity similarity, byte[] norms):base(similarity) { this.norms = norms; this.weight = weight; this.value_Renamed = weight.GetValue(); // convert tps to a list of phrase positions. // note: phrase-position differs from term-position in that its position // reflects the phrase offset: pp.pos = tp.pos - offset. // this allows to easily identify a matching (exact) phrase // when all PhrasePositions have exactly the same position. for (int i = 0; i < tps.Length; i++) { PhrasePositions pp = new PhrasePositions(tps[i], offsets[i]); if (last != null) { // add next to end of list last.next = pp; } else { first = pp; } last = pp; } pq = new PhraseQueue(tps.Length); // construct empty pq first.doc = - 1; }
/// <summary> Construct a <code>TermScorer</code>. /// /// </summary> /// <param name="weight">The weight of the <code>Term</code> in the query. /// </param> /// <param name="td">An iterator over the documents matching the <code>Term</code>. /// </param> /// <param name="similarity">The <code>Similarity</code> implementation to be used for score /// computations. /// </param> /// <param name="norms">The field norms of the document fields for the <code>Term</code>. /// </param> public /*internal*/ TermScorer(Weight weight, TermDocs td, Similarity similarity, byte[] norms):base(similarity) { this.weight = weight; this.termDocs = td; this.norms = norms; this.weightValue = weight.GetValue(); for (int i = 0; i < SCORE_CACHE_SIZE; i++) scoreCache[i] = GetSimilarity().Tf(i) * weightValue; }
/// <summary> Construct a <code>TermScorer</code>. /// /// </summary> /// <param name="weight">The weight of the <code>Term</code> in the query. /// </param> /// <param name="td">An iterator over the documents matching the <code>Term</code>. /// </param> /// <param name="similarity">The <code>Similarity</code> implementation to be used for score /// computations. /// </param> /// <param name="norms">The field norms of the document fields for the <code>Term</code>. /// </param> public /*internal*/ TermScorer(Weight weight, TermDocs td, Similarity similarity, byte[] norms) : base(similarity) { this.weight = weight; this.termDocs = td; this.norms = norms; this.weightValue = weight.GetValue(); for (int i = 0; i < SCORE_CACHE_SIZE; i++) { scoreCache[i] = GetSimilarity().Tf(i) * weightValue; } }
public ConstantScorer(ConstantScoreQuery enclosingInstance, Similarity similarity, IndexReader reader, Weight w) : base(similarity) { InitBlock(enclosingInstance); theScore = w.GetValue(); DocIdSet docIdSet = Enclosing_Instance.filter.GetDocIdSet(reader); if (docIdSet == null) { docIdSetIterator = DocIdSet.EMPTY_DOCIDSET.Iterator(); } else { DocIdSetIterator iter = docIdSet.Iterator(); if (iter == null) { docIdSetIterator = DocIdSet.EMPTY_DOCIDSET.Iterator(); } else { docIdSetIterator = iter; } } }
public ConstantScorer(ConstantScoreQuery enclosingInstance, Similarity similarity, IndexReader reader, Weight w):base(similarity) { InitBlock(enclosingInstance); theScore = w.GetValue(); DocIdSet docIdSet = Enclosing_Instance.filter.GetDocIdSet(reader); if (docIdSet == null) { docIdSetIterator = DocIdSet.EMPTY_DOCIDSET.Iterator(); } else { DocIdSetIterator iter = docIdSet.Iterator(); if (iter == null) { docIdSetIterator = DocIdSet.EMPTY_DOCIDSET.Iterator(); } else { docIdSetIterator = iter; } } }