コード例 #1
0
ファイル: Network.backup.cs プロジェクト: ronin13/gneuron
        private void run()
        {
            FPA t1 = PA.Add(PA.InnerProduct(dinput, diwt), theta);

            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t1)), 1.0f));

            FPA t2 = PA.Add(PA.InnerProduct(ohidden, dowt), tau);

            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t2)), 1.0f));

            FPA oerror = PA.Subtract(doutput, ooutput);



            FPA herror = PA.InnerProduct(dowt, PA.Transpose(oerror, new int[] { 1, 0 }));

            herror = PA.InnerProduct(PA.Multiply(PA.Subtract(1.0f, t1), t1), herror);

            FPA _owt = PA.Add(dowt, PA.Multiply(PA.InnerProduct(t1, oerror), betao));

            FPA _iwt = PA.Multiply(PA.InnerProduct(herror, dinput), betah); //original dinput herror

            dtau = PA.Add(PA.Multiply(betao, oerror), dtau);

            dtheta = PA.Add(PA.Multiply(betah, herror), dtheta); //orig herror

            PA.ToArray(_owt, out owt);
            PA.ToArray(_iwt, out iwt);

            diwt = new DFPA(owt);
            dowt = new DFPA(iwt);
        }
コード例 #2
0
        private void run()
        {
            FPA t1 = PA.Add(PA.InnerProduct(dinput, diwt), theta);             // summation and theta

            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t1)), 1.0f)); //applying sigmoid function

            FPA t2 = PA.Add(PA.InnerProduct(ohidden, dowt), tau);              // summation and tau

            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t2)), 1.0f));

            FPA oerror = PA.Subtract(doutput, ooutput);                                                                     //numpat no

            FPA herror = PA.Transpose(PA.InnerProduct(dowt, PA.Transpose(oerror, new int[] { 1, 0 })), new int[] { 1, 0 }); // doubtful transpose

            herror = PA.Multiply(PA.Multiply(PA.Subtract(1.0f, t1), t1), herror);

            FPA _owt = PA.Add(dowt, PA.Multiply(PA.InnerProduct(PA.Transpose(t1, new int[] { 1, 0 }), oerror), betao)); // orig no transpose


            FPA _iwt = PA.Multiply(PA.InnerProduct(PA.Transpose(dinput, new int[] { 1, 0 }), herror), betah); //original dinput herror and no transpose

            dtau = PA.Add(PA.Multiply(betao, oerror), dtau);

            dtheta = PA.Add(PA.Multiply(betah, herror), dtheta); //orig oerror

            PA.ToArray(_owt, out owt);
            PA.ToArray(_iwt, out iwt);

            cleanup();
            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);
        }
コード例 #3
0
ファイル: Network.cs プロジェクト: ronin13/gneuron
        /*
         * Function which performs all the GPU operations
         */
        private void run()
        {
            /* Note : Inner product --- Matrix multiplication
             *        Multiply -- Element by element multiplication */

            FPA t1 = PA.Add(PA.InnerProduct(dinput, diwt), dtheta);

            /* ohidden is the output of hidden layer
             * Only Sigmoid function is used for timebeing */
            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow(new FPA(2.71828f, new int[] { numpat, nh }), PA.Negate(t1)), 1.0f));

            FPA t2 = PA.Add(PA.InnerProduct(ohidden, dowt), dtau);

            /* ooutput is the "actual" output of hidden layer
             * Only Sigmoid function is used for timebeing */
            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow(new FPA(2.71828f, new int[] { numpat, no }), PA.Negate(t2)), 1.0f));

            /* Error between expected and actual */
            FPA oerror = PA.Subtract(doutput, ooutput);

            /* Checking if error has fallen below 1% if so terminatinf further cycles */
            BoolParallelArray b = PA.All(PA.CompareGreater(derror, PA.Abs(oerror)), 1);

            b = PA.All(b);
            bool[] bt;
            PA.ToArray(b, out bt);
            if (bt[0] == true)
            {
                traincycles = 0;
            }

            /* herror is the error in the hidden layer */
            FPA herror = PA.Transpose(PA.InnerProduct(dowt, PA.Transpose(oerror, new int[] { 1, 0 })), new int[] { 1, 0 });

            herror = PA.Multiply(PA.Multiply(PA.Subtract(1.0f, ohidden), ohidden), herror);

            /* Weights between hidden  and output layer being updated */
            FPA _owt = PA.Add(PA.Multiply(PA.InnerProduct(PA.Transpose(ohidden, new int[] { 1, 0 }), oerror), betao), dowt);

            /* Weights between input  and hidden layer being updated */
            FPA _iwt = PA.Add(PA.Multiply(PA.InnerProduct(PA.Transpose(dinput, new int[] { 1, 0 }), herror), betah), diwt);

            /*Updating threshold for output layer */
            dtau = PA.Add(PA.Multiply(betao, oerror), dtau);

            /*Updating threshold for hidden layer */
            dtheta = PA.Add(PA.Multiply(betah, herror), dtheta);

            /* Casting the Parallel arrays to normal arrays */
            PA.ToArray(_owt, out owt);
            PA.ToArray(_iwt, out iwt);

            /* Rebuilding the disposable arrays from newly formed arrays */
            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);
        }
コード例 #4
0
ファイル: Network.cs プロジェクト: ronin13/gneuron
        public float[] Test(float[] iinput)
        {
            float[,] tinput = new float[1, ni];
            for (int i = 0; i < ni; i++)
            {
                tinput[0, i] = iinput[i];
            }

            dinput = new DFPA(tinput);
            diwt   = new DFPA(iwt);
            dowt   = new DFPA(owt);

            dtheta = PA.Section(dtheta, new Slice(0, 1), new Slice(0, nh));
            dtau   = PA.Section(dtau, new Slice(0, 1), new Slice(0, no));

            FPA t1      = PA.Add(PA.InnerProduct(dinput, diwt), dtheta);
            FPA ohidden = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t1)), 1.0f));
            FPA t2      = PA.Add(PA.InnerProduct(ohidden, dowt), dtau);

            FPA ooutput = PA.Reciprocal(PA.Add(PA.Pow2(PA.Negate(t2)), 1.0f));

            float[,] output;
            float[] routput = new float[no];
            PA.ToArray(ooutput, out output);

            for (int i = 0; i < no; i++)
            {
                routput[i] = output[0, i];
            }

            /*Disposable Floating arrays need to be explicitly "disposed" */
            dinput.Dispose();
            diwt.Dispose();
            dowt.Dispose();
            doutput.Dispose();

            /*Releasing all GPU Resources*/
            PA.UnInit();

            return(routput);
        }
コード例 #5
0
ファイル: Network.backup.cs プロジェクト: ronin13/gneuron
        public void start()
        {
            init();

            PA.InitGPU();

            dinput  = new DFPA(input);
            doutput = new DFPA(output);

            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);

            while (traincycles-- > 0)
            {
                run();
            }

            cleanup();

            PA.UnInit();
        }
コード例 #6
0
ファイル: Network.cs プロジェクト: ronin13/gneuron
        /*
         * Entry Function
         */
        public void start()
        {
            /* Initialisation of all layers*/
            init();

            /*Normalisation of weights */
            normali();
            normalo();

            /*Initialisation of GPU*/
            PA.InitGPU();

            /*Measurement starts*/
            QueryPerformanceCounter(ref timbeg);

            diwt = new DFPA(iwt);
            dowt = new DFPA(owt);

            dinput  = new DFPA(input);
            doutput = new DFPA(output);

            /* Minimum permissible error */
            derror = PA.Abs(PA.Multiply(doutput, 0.01f));

            while (traincycles > 0)
            {
                traincycles--;
                numcycles++;
                run();
            }

            long freq = 0;

            /*Measurement ends */
            QueryPerformanceCounter(ref timend);
            QueryPerformanceFrequency(ref freq);
            _timtaken = (timend - timbeg) * 1.0 / freq;
        }
コード例 #7
0
ファイル: Class1.cs プロジェクト: Buanderie/gpukohonen
        private void InitMap()
        {
            // MAP VALUES AND SHAPE
            Random RandomNumber = new Random();
            weight_vals = new float[m_PatternLength,m_Width * m_Height];
            for (int i = 0; i < m_Width * m_Height; ++i)
            {
                for(int k = 0; k < m_PatternLength; ++k )
                weight_vals[k, i] = (float)(RandomNumber.NextDouble()*255.0f);
            }

            shape_vals = new float[2,m_Width*m_Height];
            for( int i = 0; i < m_Height; i++ )
                for (int j = 0; j < m_Width; j++)
                {
                    shape_vals[0,m_Width*i + j] = j+1;
                    shape_vals[1,m_Width*i + j] = i+1;
                }

            m_Weights = new DisposableFloatParallelArray(weight_vals);
            m_Shape = new DFPA(shape_vals);
            //

            //BMU INIT
            m_bmucoord_vals = new float[2];
            m_bmucodevector_vals = new float[m_PatternLength];

            //ZEROS FOR FINDBMU
            zero_vals = new float[2, m_Width * m_Height];
            for (int i = 0; i < m_Width * m_Height; ++i)
            {
                zero_vals[0, i] = 0;
                zero_vals[1, i] = 0;
            }
            zerocv_vals = new float[m_PatternLength, m_Width * m_Height];
            for (int i = 0; i < m_Width * m_Height; ++i)
                for (int k = 0; k < m_PatternLength; ++k)
                {
                    zerocv_vals[k, i] = 0;
                    zerocv_vals[k, i] = 0;
                }

            zeroscv = new DFPA(zerocv_vals);
            zeros = new DFPA(zero_vals);
            //

            //INIT TIME
            //Don't use this
            m_Time = new DFPA(new float[] { 1 });

            //NEIGHBORHOOD VARIABLE INIT
            m_maxtime_val = 100.0f;
            m_theta_val = 100.0f / (float)Math.Log(25);
            m_sigmainitial_val = 25;
            m_epsiloninitial_val = 0.1f;
            m_Theta = new DFPA(new float[] { m_theta_val });
            m_SigmaInitial = new DFPA(new float[] { m_sigmainitial_val });
            m_EpsilonInitial = new DFPA(new float[] { m_epsiloninitial_val });
            m_MaxTime = new DFPA(new float[] { m_maxtime_val });

            //LOG BASE
            LogBase = new DFPA(new float[] { (float)(Math.E) });
        }
コード例 #8
0
ファイル: Class1.cs プロジェクト: Buanderie/gpukohonen
        private void InitMap()
        {
            // MAP VALUES AND SHAPE
            Random RandomNumber = new Random();

            weight_vals = new float[m_PatternLength, m_Width *m_Height];
            for (int i = 0; i < m_Width * m_Height; ++i)
            {
                for (int k = 0; k < m_PatternLength; ++k)
                {
                    weight_vals[k, i] = (float)(RandomNumber.NextDouble() * 255.0f);
                }
            }

            shape_vals = new float[2, m_Width *m_Height];
            for (int i = 0; i < m_Height; i++)
            {
                for (int j = 0; j < m_Width; j++)
                {
                    shape_vals[0, m_Width *i + j] = j + 1;
                    shape_vals[1, m_Width *i + j] = i + 1;
                }
            }

            m_Weights = new DisposableFloatParallelArray(weight_vals);
            m_Shape   = new DFPA(shape_vals);
            //

            //BMU INIT
            m_bmucoord_vals      = new float[2];
            m_bmucodevector_vals = new float[m_PatternLength];

            //ZEROS FOR FINDBMU
            zero_vals = new float[2, m_Width *m_Height];
            for (int i = 0; i < m_Width * m_Height; ++i)
            {
                zero_vals[0, i] = 0;
                zero_vals[1, i] = 0;
            }
            zerocv_vals = new float[m_PatternLength, m_Width *m_Height];
            for (int i = 0; i < m_Width * m_Height; ++i)
            {
                for (int k = 0; k < m_PatternLength; ++k)
                {
                    zerocv_vals[k, i] = 0;
                    zerocv_vals[k, i] = 0;
                }
            }

            zeroscv = new DFPA(zerocv_vals);
            zeros   = new DFPA(zero_vals);
            //

            //INIT TIME
            //Don't use this
            m_Time = new DFPA(new float[] { 1 });

            //NEIGHBORHOOD VARIABLE INIT
            m_maxtime_val        = 100.0f;
            m_theta_val          = 100.0f / (float)Math.Log(25);
            m_sigmainitial_val   = 25;
            m_epsiloninitial_val = 0.1f;
            m_Theta          = new DFPA(new float[] { m_theta_val });
            m_SigmaInitial   = new DFPA(new float[] { m_sigmainitial_val });
            m_EpsilonInitial = new DFPA(new float[] { m_epsiloninitial_val });
            m_MaxTime        = new DFPA(new float[] { m_maxtime_val });

            //LOG BASE
            LogBase = new DFPA(new float[] { (float)(Math.E) });
        }//Init