internal override InternalRegressionTree TrainingIteration(IChannel ch, bool[] activeFeatures) { Contracts.CheckValue(ch, nameof(ch)); // Fit a regression tree to the gradient using least squares. InternalRegressionTree tree = TreeLearner.FitTargets(ch, activeFeatures, AdjustTargetsAndSetWeights(ch)); if (tree == null) { return(null); // Could not learn a tree. Exit. } // Adjust output values of tree by performing a Newton step. // REVIEW: This should be part of OptimizingAlgorithm. using (Timer.Time(TimerEvent.TreeLearnerAdjustTreeOutputs)) { double[] backupScores = null; // when doing dropouts we need to replace the TrainingScores with the scores without the dropped trees if (DropoutRate > 0) { backupScores = TrainingScores.Scores; TrainingScores.Scores = _scores; } if (AdjustTreeOutputsOverride != null) { AdjustTreeOutputsOverride.AdjustTreeOutputs(ch, tree, TreeLearner.Partitioning, TrainingScores); } else if (ObjectiveFunction is IStepSearch) { (ObjectiveFunction as IStepSearch).AdjustTreeOutputs(ch, tree, TreeLearner.Partitioning, TrainingScores); } else { throw ch.Except("No AdjustTreeOutputs defined. Objective function should define IStepSearch or AdjustTreeOutputsOverride should be set"); } if (DropoutRate > 0) { // Returning the original scores. TrainingScores.Scores = backupScores; } } if (Smoothing != 0.0) { SmoothTree(tree, Smoothing); UseFastTrainingScoresUpdate = false; } if (DropoutRate > 0) { // Don't do shrinkage if you do dropouts. double scaling = (1.0 / (1.0 + _numberOfDroppedTrees)); tree.ScaleOutputsBy(scaling); _treeScores.Add(tree.GetOutputs(TrainingScores.Dataset)); } UpdateAllScores(ch, tree); Ensemble.AddTree(tree); return(tree); }
public override RegressionTree TrainingIteration(IChannel ch, bool[] activeFeatures) { Contracts.CheckValue(ch, nameof(ch)); double[] sampleWeights = null; double[] targets = GetGradient(ch); double[] weightedTargets = _gradientWrapper.AdjustTargetAndSetWeights(targets, ObjectiveFunction, out sampleWeights); RegressionTree tree = ((RandomForestLeastSquaresTreeLearner)TreeLearner).FitTargets(ch, activeFeatures, weightedTargets, targets, sampleWeights); if (tree != null) { Ensemble.AddTree(tree); } return(tree); }
private Ensemble GetEnsembleFromSolution(LassoFit fit, int solutionIdx, Ensemble originalEnsemble) { Ensemble ensemble = new Ensemble(); int weightsCount = fit.NumberOfWeights[solutionIdx]; for (int i = 0; i < weightsCount; i++) { double weight = fit.CompressedWeights[solutionIdx][i]; if (weight != 0) { RegressionTree tree = originalEnsemble.GetTreeAt(fit.Indices[i]); tree.Weight = weight; ensemble.AddTree(tree); } } ensemble.Bias = fit.Intercepts[solutionIdx]; return(ensemble); }
public IPredictor CombineModels(IEnumerable<IPredictor> models) { _host.CheckValue(models, nameof(models)); var ensemble = new Ensemble(); int modelCount = 0; int featureCount = -1; bool binaryClassifier = false; foreach (var model in models) { modelCount++; var predictor = model; _host.CheckValue(predictor, nameof(models), "One of the models is null"); var calibrated = predictor as CalibratedPredictorBase; double paramA = 1; if (calibrated != null) { _host.Check(calibrated.Calibrator is PlattCalibrator, "Combining FastTree models can only be done when the models are calibrated with Platt calibrator"); predictor = calibrated.SubPredictor; paramA = -(calibrated.Calibrator as PlattCalibrator).ParamA; } var tree = predictor as FastTreePredictionWrapper; if (tree == null) throw _host.Except("Model is not a tree ensemble"); foreach (var t in tree.TrainedEnsemble.Trees) { var bytes = new byte[t.SizeInBytes()]; int position = -1; t.ToByteArray(bytes, ref position); position = -1; var tNew = new RegressionTree(bytes, ref position); if (paramA != 1) { for (int i = 0; i < tNew.NumLeaves; i++) tNew.SetOutput(i, tNew.LeafValues[i] * paramA); } ensemble.AddTree(tNew); } if (modelCount == 1) { binaryClassifier = calibrated != null; featureCount = tree.InputType.ValueCount; } else { _host.Check((calibrated != null) == binaryClassifier, "Ensemble contains both calibrated and uncalibrated models"); _host.Check(featureCount == tree.InputType.ValueCount, "Found models with different number of features"); } } var scale = 1 / (double)modelCount; foreach (var t in ensemble.Trees) { for (int i = 0; i < t.NumLeaves; i++) t.SetOutput(i, t.LeafValues[i] * scale); } switch (_kind) { case PredictionKind.BinaryClassification: if (!binaryClassifier) return new FastTreeBinaryPredictor(_host, ensemble, featureCount, null); var cali = new PlattCalibrator(_host, -1, 0); return new FeatureWeightsCalibratedPredictor(_host, new FastTreeBinaryPredictor(_host, ensemble, featureCount, null), cali); case PredictionKind.Regression: return new FastTreeRegressionPredictor(_host, ensemble, featureCount, null); case PredictionKind.Ranking: return new FastTreeRankingPredictor(_host, ensemble, featureCount, null); default: _host.Assert(false); throw _host.ExceptNotSupp(); } }