コード例 #1
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusTruncatedGaussianOp"]/message_doc[@name="AAverageConditional(double, TruncatedGaussian)"]/*'/>
        public static TruncatedGaussian AAverageConditional(double sum, [SkipIfUniform] TruncatedGaussian b)
        {
            Gaussian prior = b.ToGaussian();
            Gaussian post  = DoublePlusOp.AAverageConditional(sum, prior);

            return(new TruncatedGaussian(post, sum - b.UpperBound, sum - b.LowerBound));
        }
コード例 #2
0
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="IndexOfMaximumOp"]/message_doc[@name="LogAverageFactor{GaussianList}(IndexOfMaximumBuffer, GaussianList, int)"]/*'/>
        /// <typeparam name="GaussianList">The type of an incoming message from <c>list</c>.</typeparam>
        public static double LogAverageFactor <GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
            where GaussianList : IList <Gaussian>
        {
            double evidence     = 0;
            var    max_marginal = list[IndexOfMaximumDouble] * Buffer.to_list[IndexOfMaximumDouble];

            for (int c = 0; c < list.Count; c++)
            {
                if (c != IndexOfMaximumDouble)
                {
                    var msg_to_sum        = max_marginal / Buffer.MessagesToMax[c];
                    var msg_to_positiveop = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: list[c]);
                    evidence += IsPositiveOp.LogEvidenceRatio(true, msg_to_positiveop);
                    // sum operator does not contribute because no projection is involved
                    // the x[index]-x[c] variable does not contribute because it only connects to two factors
                    evidence -= msg_to_sum.GetLogAverageOf(Buffer.MessagesToMax[c]);
                    if (max_marginal.IsPointMass)
                    {
                        evidence += Buffer.MessagesToMax[c].GetLogAverageOf(max_marginal);
                    }
                    else
                    {
                        evidence -= Buffer.MessagesToMax[c].GetLogNormalizer();
                    }
                }
            }
            //evidence += ReplicateOp.LogEvidenceRatio<Gaussian>(MessagesToMax, list[IndexOfMaximumDouble], MessagesToMax.Select(o => max_marginal / o).ToArray());
            if (!max_marginal.IsPointMass)
            {
                evidence += max_marginal.GetLogNormalizer() - list[IndexOfMaximumDouble].GetLogNormalizer();
            }
            //evidence -= Buffer.MessagesToMax.Sum(o => o.GetLogNormalizer());
            //evidence -= Buffer.MessagesToMax.Sum(o => (max_marginal / o).GetLogAverageOf(o));
            return(evidence);
        }
コード例 #3
0
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="IndexOfMaximumOp"]/message_doc[@name="Buffer{GaussianList}(IndexOfMaximumBuffer, GaussianList, int)"]/*'/>
        /// <typeparam name="GaussianList">The type of an incoming message from <c>list</c>.</typeparam>
        public static IndexOfMaximumBuffer Buffer <GaussianList>(
            IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble) // redundant parameters required for correct dependency graph
            where GaussianList : IList <Gaussian>
        {
            var      max_marginal = Buffer.to_list[IndexOfMaximumDouble] * list[IndexOfMaximumDouble];
            Gaussian product      = Gaussian.Uniform();

            //var order = Rand.Perm(list.Count);
            for (int i = 0; i < list.Count; i++)
            {
                //int c = order[i];
                int c = i;
                if (c != IndexOfMaximumDouble)
                {
                    var msg_to_sum = max_marginal / Buffer.MessagesToMax[c];

                    var msg_to_positiveop = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: list[c]);
                    var msgFromPositiveOp = IsPositiveOp.XAverageConditional(true, msg_to_positiveop);
                    Buffer.MessagesToMax[c] = DoublePlusOp.SumAverageConditional(list[c], msgFromPositiveOp);
                    Buffer.to_list[c]       = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: msgFromPositiveOp);
                    max_marginal            = msg_to_sum * Buffer.MessagesToMax[c];
                    product.SetToProduct(product, Buffer.MessagesToMax[c]);
                }
            }
            //Buffer.to_list[IndexOfMaximumDouble] = max_marginal / list[IndexOfMaximumDouble];
            Buffer.to_list[IndexOfMaximumDouble] = product;
            return(Buffer);
        }
コード例 #4
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusWrappedGaussianOp"]/message_doc[@name="AAverageConditional(WrappedGaussian, double)"]/*'/>
        public static WrappedGaussian AAverageConditional([SkipIfUniform] WrappedGaussian sum, double b)
        {
            WrappedGaussian result = WrappedGaussian.Uniform(sum.Period);

            result.Gaussian = DoublePlusOp.AAverageConditional(sum.Gaussian, b);
            result.Normalize();
            return(result);
        }
コード例 #5
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusTruncatedGaussianOp"]/message_doc[@name="AAverageConditional(TruncatedGaussian, double)"]/*'/>
        public static TruncatedGaussian AAverageConditional([SkipIfUniform] TruncatedGaussian sum, double b)
        {
            Gaussian          prior  = sum.ToGaussian();
            Gaussian          post   = DoublePlusOp.AAverageConditional(prior, b);
            TruncatedGaussian result = sum;

            result.Gaussian    = post;
            result.LowerBound -= b;
            result.UpperBound -= b;
            return(result);
        }
コード例 #6
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusTruncatedGaussianOp"]/message_doc[@name="SumAverageConditional(double, TruncatedGaussian)"]/*'/>
        public static TruncatedGaussian SumAverageConditional(double a, [SkipIfUniform] TruncatedGaussian b)
        {
            Gaussian          prior  = b.ToGaussian();
            Gaussian          post   = DoublePlusOp.SumAverageConditional(a, prior);
            TruncatedGaussian result = b;

            result.Gaussian    = post;
            result.LowerBound += a;
            result.UpperBound += a;
            return(result);
        }
コード例 #7
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
        /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusWrappedGaussianOp"]/message_doc[@name="AAverageConditional(WrappedGaussian, WrappedGaussian)"]/*'/>
        public static WrappedGaussian AAverageConditional([SkipIfUniform] WrappedGaussian sum, [SkipIfUniform] WrappedGaussian b)
        {
            if (sum.Period != b.Period)
            {
                throw new ArgumentException("sum.Period (" + sum.Period + ") != b.Period (" + b.Period + ")");
            }
            WrappedGaussian result = WrappedGaussian.Uniform(sum.Period);

            result.Gaussian = DoublePlusOp.AAverageConditional(sum.Gaussian, b.Gaussian);
            result.Normalize();
            return(result);
        }
コード例 #8
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusVmpOp"]/message_doc[@name="SumAverageLogarithm(Gaussian, double)"]/*'/>
 public static Gaussian SumAverageLogarithm([SkipIfUniform] Gaussian a, double b)
 {
     return(DoublePlusOp.SumAverageConditional(a, b));
 }
コード例 #9
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusVmpOp"]/message_doc[@name="AverageLogFactor(double, double, double)"]/*'/>
 public static double AverageLogFactor(double sum, double a, double b)
 {
     return(DoublePlusOp.LogAverageFactor(sum, a, b));
 }
コード例 #10
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusVmpOp"]/message_doc[@name="SumAverageLogarithm(double, WrappedGaussian)"]/*'/>
 public static WrappedGaussian SumAverageLogarithm(double a, [SkipIfUniform] WrappedGaussian b)
 {
     return(DoublePlusOp.SumAverageConditional(a, b));
 }
コード例 #11
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 public static Gaussian BAverageConditional([SkipIfUniform] Gaussian Sum, Gaussian a)
 {
     return(DoublePlusOp.BAverageConditional(Sum, a));
 }
コード例 #12
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusOp"]/message_doc[@name="SumAverageConditional(Gaussian, Gaussian)"]/*'/>
 public static Gaussian SumAverageConditional([NoInit] Gaussian a, [NoInit] Gaussian b)
 {
     return(DoublePlusOp.SumAverageConditional(a, b));
 }
コード例 #13
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoubleMinusVmpOp"]/message_doc[@name="DifferenceAverageLogarithm(Gaussian, Gaussian)"]/*'/>
 public static Gaussian DifferenceAverageLogarithm([SkipIfUniform] Gaussian a, [SkipIfUniform] Gaussian b)
 {
     return(DoublePlusOp.AAverageConditional(a, b));
 }
コード例 #14
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusTruncatedGaussianOp"]/message_doc[@name="AAverageConditional(Gaussian, Gaussian)"]/*'/>
 public static Gaussian AAverageConditional([SkipIfUniform] Gaussian sum, [SkipIfUniform] TruncatedGaussian b)
 {
     return(DoublePlusOp.AAverageConditional(sum, b.ToGaussian()));
 }
コード例 #15
0
ファイル: PlusDouble.cs プロジェクト: kant2002/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="PlusTruncatedGaussianOp"]/message_doc[@name="SumAverageConditional(Gaussian, TruncatedGaussian)"]/*'/>
 public static Gaussian SumAverageConditional([SkipIfUniform] Gaussian a, [SkipIfUniform] TruncatedGaussian b)
 {
     return(DoublePlusOp.SumAverageConditional(a, b.ToGaussian()));
 }
コード例 #16
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusVmpOp"]/message_doc[@name="SumAverageLogarithm(double, double)"]/*'/>
 public static Gaussian SumAverageLogarithm(double a, double b)
 {
     return(DoublePlusOp.SumAverageConditional(a, b));
 }
コード例 #17
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusVmpOp"]/message_doc[@name="AAverageLogarithm(double, double)"]/*'/>
 public static Gaussian AAverageLogarithm(double Sum, double b)
 {
     return(DoublePlusOp.AAverageConditional(Sum, b));
 }
コード例 #18
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoublePlusEvidenceOp"]/message_doc[@name="LogEvidenceRatio(double, double, double)"]/*'/>
 public static double LogEvidenceRatio(double Sum, double a, double b)
 {
     return(DoublePlusOp.LogAverageFactor(Sum, a, b));
 }
コード例 #19
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoubleMinusVmpOp"]/message_doc[@name="DifferenceAverageLogarithm(double, double)"]/*'/>
 public static Gaussian DifferenceAverageLogarithm(double a, double b)
 {
     return(DoublePlusOp.AAverageConditional(a, b));
 }
コード例 #20
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoubleMinusEvidenceOp"]/message_doc[@name="LogEvidenceRatio(double, double, double)"]/*'/>
 public static double LogEvidenceRatio(double difference, double a, double b)
 {
     return(DoublePlusOp.LogAverageFactor(a, difference, b));
 }
コード例 #21
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 public static Gaussian AAverageConditional([SkipIfUniform] Gaussian Sum, Gaussian b)
 {
     return(DoublePlusOp.AAverageConditional(Sum, b));
 }
コード例 #22
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoubleMinusEvidenceOp"]/message_doc[@name="LogEvidenceRatio(double, Gaussian, Gaussian)"]/*'/>
 public static double LogEvidenceRatio(double difference, Gaussian a, [Fresh] Gaussian to_a)
 {
     return(DoublePlusOp.LogAverageFactor(a, to_a));
 }
コード例 #23
0
        /// <summary>
        /// Returns the probability that A>B
        /// </summary>
        /// <param name="A"></param>
        /// <param name="B"></param>
        /// <returns></returns>
        private static Bernoulli ProbGreater(Gaussian A, Gaussian B)
        {
            Gaussian diff = DoublePlusOp.AAverageConditional(Sum: A, b: B);

            return(IsPositiveOp.IsPositiveAverageConditional(diff));
        }
コード例 #24
0
ファイル: PlusDouble.cs プロジェクト: woooodbond/infer
 /// <include file='FactorDocs.xml' path='factor_docs/message_op_class[@name="DoubleMinusEvidenceOp"]/message_doc[@name="LogEvidenceRatio(double, double, Gaussian, Gaussian)"]/*'/>
 public static double LogEvidenceRatio(double difference, double a, Gaussian b, [Fresh] Gaussian to_b)
 {
     return(DoublePlusOp.LogAverageFactor(b, to_b));
 }