コード例 #1
0
        /*
         * Create mining model
         */
        private void CreateMiningModel(Microsoft.AnalysisServices.MiningStructure objStructure, string sName, string sAlgorithm,
                                       List <string> lsAtrPredict, List <string> lsMeasurePredict, List <bool> lbPredictItems, int parOne, int parTwo)
        {
            Microsoft.AnalysisServices.MiningModel myMiningModel = objStructure.CreateMiningModel(true, sName);

            /* Notes:
             * Each mining column must have its' input and predict columns
             * Input and key columns are added automatically when they are created in the mining structure
             * Predict columns can be added in the mining model
             * An input column can be also a predict column
             */

            myMiningModel.Algorithm = sAlgorithm;

            switch (sAlgorithm)
            {
            case MiningModelAlgorithms.MicrosoftClustering:
                myMiningModel.AlgorithmParameters.Add("CLUSTERING_METHOD", parOne);
                if (parTwo > 0)
                {
                    myMiningModel.AlgorithmParameters.Add("CLUSTER_COUNT", parTwo);
                }
                break;

            //case MiningModelAlgorithms.MicrosoftTimeSeries:
            //    myMiningModel.AlgorithmParameters.Add("PERIODICITY_HINT", "{12}");              // {12} represents the number of months for prediction
            //    break;
            case MiningModelAlgorithms.MicrosoftNaiveBayes:
                break;

            case MiningModelAlgorithms.MicrosoftDecisionTrees:
                myMiningModel.AlgorithmParameters.Add("SCORE_METHOD", parOne);
                myMiningModel.AlgorithmParameters.Add("SPLIT_METHOD", parTwo);
                break;
            }


            /***************** Predict columns *****************/
            // add optional predict columns
            if (lsAtrPredict.Count != 0)
            {
                // predict columns
                for (int i = 0; i < lsAtrPredict.Count; i++)
                {
                    Microsoft.AnalysisServices.MiningModelColumn modelColumn = myMiningModel.Columns.GetByName(lsAtrPredict[i]);
                    modelColumn.SourceColumnID = lsAtrPredict[i];

                    if (lbPredictItems[i] == true)
                    {
                        modelColumn.Usage = MiningModelColumnUsages.PredictOnly;
                    }
                    else
                    {
                        modelColumn.Usage = MiningModelColumnUsages.Predict;
                    }
                }
            }

            myMiningModel.Update();
        }
コード例 #2
0
        /*---------------------------------
         * Description: Update Mining Model and process StockPredict DB with new MAX, MIN when MAX,MIN are changed by Technology Analysis (IdentifyTrend)
         * ----------------------------------- */
        public static bool UpdateMMbyAnalysis(string sStockCode)
        {
            Server   svr = ConnectServer(str_Con_Svr);
            Database db  = svr.Databases.GetByName("StockPredict");

            Microsoft.AnalysisServices.MiningStructure ms = db.MiningStructures.FindByName(sStockCode);
            Microsoft.AnalysisServices.MiningModel     mm = ms.MiningModels.FindByName(sStockCode);
            mm.AlgorithmParameters.Remove("MAXIMUM_SERIES_VALUE");
            mm.AlgorithmParameters.Remove("MINIMUM_SERIES_VALUE");
            // Max, Min Time Series
            mm.AlgorithmParameters.Add("MAXIMUM_SERIES_VALUE", MAXIMUM_SERIES_VALUE);
            mm.AlgorithmParameters.Add("MINIMUM_SERIES_VALUE", MINIMUM_SERIES_VALUE);

            mm.Update();
            mm.Process(ProcessType.ProcessFull);

            // Update parameters into StockForecastModel
            try
            {
                SqlConnection conn = new SqlConnection(str_Con_SQL);
                conn.Open();
                SqlCommand cmdUpdate = conn.CreateCommand();
                cmdUpdate.CommandText = "Update StockForecastModel Set MAXIMUM_SERIES_VALUE=" + MAXIMUM_SERIES_VALUE.ToString().Replace(',', '.')
                                        + ", MINIMUM_SERIES_VALUE=" + MINIMUM_SERIES_VALUE.ToString().Replace(',', '.')
                                        + " Where StockCode='" + sStockCode + "'";
                cmdUpdate.ExecuteNonQuery();
                cmdUpdate.Dispose();
                conn.Close();
            }
            catch (Exception ex) { MessageBox.Show("Không thể cập nhật StockForecastModel!"); return(false); }

            return(true);
        }
コード例 #3
0
        public static bool UpdateMMTest(Microsoft.AnalysisServices.MiningModel mm, string strStockCode, DateTime dtTo)
        {
            mm.AlgorithmParameters.Clear();
            // Default:10; 10:5 -> from 0 to (n-10)/5
            //mm.AlgorithmParameters.Add("MINIMUM_SUPPORT", 10);

            // 0.1:0.05 -> from 0 to (1-0.1)/0.05=18
            mm.AlgorithmParameters.Add("COMPLEXITY_PENALTY", COMPLEXITY_PENALTY);

            // {5,20,60}, 0:0.1 -> from 0 to (1-0.1)/0.05=18
            mm.AlgorithmParameters.Add("PERIODICITY_HINT", "{5,20,60}");
            mm.AlgorithmParameters.Add("AUTO_DETECT_PERIODICITY", AUTO_DETECT_PERIODICITY);

            // Defeult: 1, 10
            mm.AlgorithmParameters.Add("HISTORIC_MODEL_COUNT", HISTORIC_MODEL_COUNT);
            mm.AlgorithmParameters.Add("HISTORIC_MODEL_GAP", HISTORIC_MODEL_GAP);

            // Max, Min Time Series
            mm.AlgorithmParameters.Add("MAXIMUM_SERIES_VALUE", MAXIMUM_SERIES_VALUE);
            mm.AlgorithmParameters.Add("MINIMUM_SERIES_VALUE", MINIMUM_SERIES_VALUE);

            mm.Update();
            mm.Process(ProcessType.ProcessFull);
            return(ADOMDLib.CheckResultTest(strStockCode, dtTo));
        }
コード例 #4
0
        /*---------------------------------
         * Description: Update data for Analysis DB and reprocess it
         * ----------------------------------- */
        public static void UpdateTrainDB(Microsoft.AnalysisServices.Server svr, string sStockCode, bool bAll, DateTime dtFrom, DateTime dtTo, bool bMulti)
        {
            Database db = svr.Databases.GetByName("Stock");

            CreateDataAccessObjects(db, sStockCode, bAll, dtFrom, dtTo, bMulti, false);
            Microsoft.AnalysisServices.MiningModel mm = db.MiningStructures.GetByName(sStockCode).MiningModels.GetByName(sStockCode);
            // Max, Min Time Series
            mm.AlgorithmParameters.Remove("MAXIMUM_SERIES_VALUE");
            mm.AlgorithmParameters.Remove("MINIMUM_SERIES_VALUE");
            mm.AlgorithmParameters.Add("MAXIMUM_SERIES_VALUE", MAXIMUM_SERIES_VALUE);
            mm.AlgorithmParameters.Add("MINIMUM_SERIES_VALUE", MINIMUM_SERIES_VALUE);
            mm.Update();
            //db.MiningStructures.GetByName(sStockCode).Process(ProcessType.ProcessFull);
            //mm.Process(ProcessType.ProcessFull);
            db.Process(ProcessType.ProcessFull);
        }
コード例 #5
0
        /*---------------------------------
         * Description: Create Mining Model
         * ----------------------------------- */
        public static void CreateMM(Microsoft.AnalysisServices.MiningStructure ms, string strStockCode, bool bMulti)
        {
            if (ms.MiningModels.ContainsName(strStockCode))
            {
                ms.MiningModels[strStockCode].Drop();
            }
            Microsoft.AnalysisServices.MiningModel mm = ms.CreateMiningModel(true, strStockCode);
            mm.Algorithm = MiningModelAlgorithms.MicrosoftTimeSeries;

            InitialParameters(strStockCode);

            // 0.1:0.05 -> from 0 to (1-0.1)/0.05=18
            mm.AlgorithmParameters.Add("COMPLEXITY_PENALTY", COMPLEXITY_PENALTY);

            // {5,20,60}, 0:0.1 -> from 0 to (1-0.1)/0.05=18
            mm.AlgorithmParameters.Add("PERIODICITY_HINT", "{5,20,60}");
            mm.AlgorithmParameters.Add("AUTO_DETECT_PERIODICITY", AUTO_DETECT_PERIODICITY);

            // Defeult: 1, 10
            mm.AlgorithmParameters.Add("HISTORIC_MODEL_COUNT", HISTORIC_MODEL_COUNT);
            mm.AlgorithmParameters.Add("HISTORIC_MODEL_GAP", HISTORIC_MODEL_GAP);

            // Max, Min Time Series
            mm.AlgorithmParameters.Add("MAXIMUM_SERIES_VALUE", MAXIMUM_SERIES_VALUE);
            mm.AlgorithmParameters.Add("MINIMUM_SERIES_VALUE", MINIMUM_SERIES_VALUE);


            mm.AllowDrillThrough = true;

            mm.Columns["ID"].Usage         = MiningModelColumnUsages.Key;
            mm.Columns["ClosePrice"].Usage = MiningModelColumnUsages.Predict;
            if (strStockCode.ToUpper() != "VNINDEX" && !bMulti)
            {
                mm.Columns["OpenPrice"].Usage = MiningModelColumnUsages.Input;
                mm.Columns["HighPrice"].Usage = MiningModelColumnUsages.Input;
                mm.Columns["LowPrice"].Usage  = MiningModelColumnUsages.Input;
                //mm.Columns["Volume"].Usage = MiningModelColumnUsages.Input;
            }
            mm.Update();

            // Update parameters into StockForecastModel
            UpdateForecastModel(strStockCode);
        }
コード例 #6
0
        /*
         * Create mining model with custom fields and algorithm
         */
        private void CreateCustomModel(MiningStructure objStructure, string sAlgorithm, string sModelName, string sKeyColumn, List <string> lPredictColumns, List <bool> lbPredictColumns, int parOne, int parTwo)
        {
            // drop existing model
            if (objStructure.MiningModels.ContainsName(sModelName))
            {
                objStructure.MiningModels[sModelName].Drop();
            }

            // Detailed description of the model algorithms is here:
            // http://msdn.microsoft.com/en-us/library/ms175595.aspx

            // More customisation for these algorithms can be found here:
            // http://msdn.microsoft.com/en-us/library/cc280427.aspx

            // Also a model example can be found here:
            // http://msdn.microsoft.com/en-us/library/ms345087(v=SQL.100).aspx

            Microsoft.AnalysisServices.MiningModel myMiningModel = objStructure.CreateMiningModel(true, sModelName);
            myMiningModel.Algorithm = sAlgorithm;

            switch (sAlgorithm)
            {
            case MiningModelAlgorithms.MicrosoftClustering:
                myMiningModel.AlgorithmParameters.Add("CLUSTERING_METHOD", parOne);
                myMiningModel.AlgorithmParameters.Add("CLUSTER_COUNT", parTwo);
                break;

            //case MiningModelAlgorithms.MicrosoftTimeSeries:
            //    myMiningModel.AlgorithmParameters.Add("PERIODICITY_HINT", "{12}");              // {12} represents the number of months for prediction
            //    break;
            case MiningModelAlgorithms.MicrosoftNaiveBayes:
                break;

            case MiningModelAlgorithms.MicrosoftDecisionTrees:
                myMiningModel.AlgorithmParameters.Add("SCORE_METHOD", parOne);
                myMiningModel.AlgorithmParameters.Add("SPLIT_METHOD", parTwo);
                break;
            }


            /***************** Predict columns *****************/
            // add optional predict columns
            if (lPredictColumns.Count != 0)
            {
                // predict columns
                for (int i = 0; i < lPredictColumns.Count; i++)
                {
                    Microsoft.AnalysisServices.MiningModelColumn modelColumn = myMiningModel.Columns.GetByName(lPredictColumns[i]);
                    modelColumn.SourceColumnID = lPredictColumns[i];

                    if (lbPredictColumns[i] == true)
                    {
                        modelColumn.Usage = MiningModelColumnUsages.PredictOnly;
                    }
                    else
                    {
                        modelColumn.Usage = MiningModelColumnUsages.Predict;
                    }
                }
            }

            myMiningModel.Update();
        }