public static void Main(string[] args) { ToolArguments parsedArgs = new ToolArguments(args, "None", new MainClass()); PorterStemmer stemmer = new PorterStemmer(); if (parsedArgs["stem"] != null) Console.WriteLine(parsedArgs["stem"] + " => " + stemmer.stemTerm(parsedArgs["stem"])); if (parsedArgs["freqrows"] != null) { DataReader reader = new DataReader(parsedArgs["f"]); for (string[] row = reader.ReadRow(); row != null; row = reader.ReadRow()) { TwoTuple<int, int> counts = FrequencyTools.WordCount(parsedArgs["freqrows"], row[1]); Console.WriteLine(counts.one + "," + counts.two + ",\"" + row[2] + "\""); } } if (parsedArgs["emotion"] != null) { ANEWEmotionSensor sensor = new ANEWEmotionSensor("/Users/jrising/projects/virsona/github/data"); double[] emotions = sensor.EstimateEmotions(parsedArgs["emotion"]); for (int ii = 0; ii < (int) ANEWEmotionSensor.Emotions.COUNT; ii++) Console.WriteLine(((ANEWEmotionSensor.Emotions) ii).ToString() + ": " + emotions[ii]); } if (parsedArgs["emorows"] != null) { int rows = 0, valids = 0; ANEWEmotionSensor sensor = new ANEWEmotionSensor("/Users/jrising/projects/virsona/github/data"); DataReader reader = new DataReader(parsedArgs["f"]); for (string[] row = reader.ReadRow(); row != null; row = reader.ReadRow()) { rows++; double[] emotions = sensor.EstimateEmotions(row[1]); Console.WriteLine("\"" + row[0] + "\"," + emotions[0] + "," + emotions[1] + "," + emotions[2] + "," + emotions[3] + "," + emotions[4] + "," + emotions[5] + "," + emotions[6] + "," + emotions[7] + ",\"" + row[2] + "\""); if (!double.IsNaN(emotions[0])) valids++; } } }
public static void Main(string[] args) { ToolArguments parsedArgs = new ToolArguments(args, "None", new MainClass()); PorterStemmer stemmer = new PorterStemmer(); if (parsedArgs["stem"] != null) Console.WriteLine(parsedArgs["stem"] + " => " + stemmer.stemTerm(parsedArgs["stem"])); /*ANEWEmotionSensor sensor2 = new ANEWEmotionSensor("/Users/jrising/projects/virsona/github/data"); for (int rr = 0; rr < sensor2.positiveMatrix.GetLength(0); rr++) { for (int cc = 0; cc < sensor2.positiveMatrix.GetLength(1); cc++) Console.Write(sensor2.positiveMatrix[rr, cc] + ", "); Console.WriteLine(" - "); } for (int rr = 0; rr < sensor2.negativeMatrix.GetLength(0); rr++) { for (int cc = 0; cc < sensor2.negativeMatrix.GetLength(1); cc++) Console.Write(sensor2.negativeMatrix[rr, cc] + ", "); Console.WriteLine(" - "); } return;*/ if (parsedArgs["freqrows"] != null) { DataReader reader = new DataReader(parsedArgs["f"]); for (string[] row = reader.ReadRow(); row != null; row = reader.ReadRow()) { TwoTuple<int, int> counts = FrequencyTools.WordCount(parsedArgs["freqrows"], row[1]); Console.WriteLine(counts.one + "," + counts.two + ",\"" + row[2] + "\""); } } if (parsedArgs["emotion"] != null) { ANEWEmotionSensor sensor = new ANEWEmotionSensor("/Users/jrising/projects/virsona/github/data"); double[] emotions = sensor.EstimateEmotions(parsedArgs["emotion"]); for (int ii = 0; ii < (int) ANEWEmotionSensor.Emotions.COUNT; ii++) Console.WriteLine(((ANEWEmotionSensor.Emotions) ii).ToString() + ": " + emotions[ii]); } if (parsedArgs["emorows"] != null) { int rows = 0, valids = 0; ANEWEmotionSensor sensor = new ANEWEmotionSensor("/Users/jrising/projects/virsona/github/data"); DataReader reader = new DataReader(parsedArgs["f"]); for (string[] row = reader.ReadRow(); row != null; row = reader.ReadRow()) { rows++; double[] emotions = sensor.EstimateEmotions(row[1]); Console.WriteLine("\"" + row[0] + "\"," + emotions[0] + "," + emotions[1] + "," + emotions[2] + "," + emotions[3] + "," + emotions[4] + "," + emotions[5] + "," + emotions[6] + "," + emotions[7] + ",\"" + row[2] + "\""); if (!double.IsNaN(emotions[0])) valids++; } } if (parsedArgs["eimpute"] != null) { ANEWEmotionSensor sensor = new ANEWEmotionSensor("/Users/jrising/projects/virsona/github/data"); // DIAGNOSTIC /*List<List<string>> rows = new List<List<string>>(); rows.Add(TwitterUtilities.SplitWords("happy aaaa cccc")); rows.Add(TwitterUtilities.SplitWords("sad bbbb cccc")); IDataSource<string, ThreeTuple<ContinuousDistribution, ContinuousDistribution, ContinuousDistribution>> inputed = sensor.ImputeEmotionalContent(rows, 1000); foreach (KeyValuePair<string, ThreeTuple<ContinuousDistribution, ContinuousDistribution, ContinuousDistribution>> kvp in inputed) Console.WriteLine(kvp.Key + ": " + kvp.Value.one.Mean + ", " + kvp.Value.two.Mean + ", " + kvp.Value.three.Mean);*/ bool smallFile = false; if (smallFile) { DataReader reader = new DataReader(parsedArgs["f"]); List<List<string>> rows = new List<List<string>>(); for (string[] row = reader.ReadRow(); row != null; row = reader.ReadRow()) { Console.WriteLine(row); rows.Add(TwitterUtilities.SplitWords(row[10].ToLower())); } reader.Close(); /*IDataSource<string, ThreeTuple<ContinuousDistribution, ContinuousDistribution, ContinuousDistribution>> inputed = sensor.ImputeEmotionalContent(rows, 10); double minv = 1, maxv = 0; foreach (KeyValuePair<string, ThreeTuple<ContinuousDistribution, ContinuousDistribution, ContinuousDistribution>> kvp in inputed) { minv = Math.Min(minv, kvp.Value.one.Mean); maxv = Math.Max(maxv, kvp.Value.one.Mean); Console.WriteLine(kvp.Key + ": " + kvp.Value.one.Mean + " x " + kvp.Value.one.Variance + ", " + kvp.Value.two.Mean + ", " + kvp.Value.three.Mean); } Console.WriteLine("Min: " + minv + ", Max: " + maxv);*/ sensor.ImputeEmotionalContent(rows, 10, parsedArgs["f"] + "imputed"); } else { sensor.ImputeEmotionalContentFromFile(parsedArgs["f"], 11, 0, parsedArgs["f"].Substring(0, parsedArgs["f"].Length - 4) + "imputed.csv"); } uint jj = 0; using (var stream = File.CreateText(parsedArgs["f"] + "result")) { jj++; if (jj % 1000 == 0) Console.WriteLine("#" + jj); DataReader reader = new DataReader(parsedArgs["f"]); for (string[] row = reader.ReadRow(); row != null; row = reader.ReadRow()) { double[] emotions = sensor.EstimateEmotions(row[11]); for (int ii = 0; ii < 11; ii++) stream.Write(row[ii] + ","); stream.WriteLine(emotions[0] + "," + emotions[1] + "," + emotions[2] + "," + emotions[3] + "," + emotions[4] + "," + emotions[5] + "," + emotions[6] + "," + emotions[7]); } } } }