コード例 #1
0
        /// <summary>
        /// The inverse transform from linear units to geodetic units
        /// </summary>
        /// <param name="xy">The double values for the input x and y values stored in an array</param>
        /// <param name="lp">The double values for the output lambda and phi values stored in an array</param>
        protected override void OnInverse(double[] xy, double[] lp)
        {
            int i;

            double phipp = 2 * (Math.Atan(Math.Exp(xy[Y] / _kR)) - FortPi);
            double lampp = xy[X] / _kR;
            double cp    = Math.Cos(phipp);
            double phip  = Proj.Aasin(_cosp0 * Math.Sin(phipp) + _sinp0 * cp * Math.Cos(lampp));
            double lamp  = Proj.Aasin(cp * Math.Sin(lampp) / Math.Cos(phip));
            double con   = (_k - Math.Log(Math.Tan(FortPi + 0.5 * phip))) / _c;

            for (i = Niter; i > 0; --i)
            {
                double esp  = E * Math.Sin(phip);
                double delp = (con + Math.Log(Math.Tan(FortPi + 0.5 * phip)) - _hlfE *
                               Math.Log((1 + esp) / (1 - esp))) *
                              (1 - esp * esp) * Math.Cos(phip) * ROneEs;
                phip -= delp;
                if (Math.Abs(delp) < EPS)
                {
                    break;
                }
            }
            if (i <= 0)
            {
                throw new ProjectionException(20);
            }
            lp[Phi]    = phip;
            lp[Lambda] = lamp / _c;
        }
コード例 #2
0
 /// <summary>
 /// The inverse transform from linear units to geodetic units
 /// </summary>
 /// <param name="xy">The double values for the input x and y values stored in an array</param>
 /// <param name="lp">The double values for the output lambda and phi values stored in an array</param>
 protected override void OnInverse(double[] xy, double[] lp)
 {
     lp[Phi]    = Proj.Aasin(xy[Y] / _cY);
     lp[Lambda] = xy[X] / (_cX * Math.Cos(lp[Phi]));
     lp[Phi]   += lp[Phi];
     lp[Phi]    = Proj.Aasin((lp[Phi] + Math.Sin(lp[Phi])) / _cP);
 }
コード例 #3
0
        /// <summary>
        /// The inverse transform from linear units to geodetic units
        /// </summary>
        /// <param name="xy">The double values for the input x and y values stored in an array</param>
        /// <param name="lp">The double values for the output lambda and phi values stored in an array</param>
        protected override void OnInverse(double[] xy, double[] lp)
        {
            double c;

            lp[Phi]    = Proj.Aasin(xy[Y] / Cy);
            lp[Lambda] = xy[X] / (Cx * (1 + (c = Math.Cos(lp[Phi]))));
            lp[Phi]    = Proj.Aasin((lp[Phi] + Math.Sin(lp[Phi]) * (c + 2)) / CP);
        }
コード例 #4
0
 /// <summary>
 /// Performs the inverse transform from a single coordinate of linear units to the same coordinate in geodetic lambda and
 /// phi units in the special case where the shape of the earth is being approximated as a perfect sphere.
 /// </summary>
 /// <param name="xy">The double linear input x and y values organized into a 1 dimensional array</param>
 /// <param name="lp">The double geodetic output lambda and phi values organized into a 1 dimensional array</param>
 protected override void SphericalInverse(double[] xy, double[] lp)
 {
     xy[Y]  /= _cY;
     lp[Phi] = _m > 0
                   ? Proj.Aasin((_m * xy[Y] + Math.Sin(xy[Y])) / _n)
                   :
               (_n != 1 ? Proj.Aasin(Math.Sin(xy[Y]) / _n) : xy[Y]);
     lp[Lambda] = xy[X] / (_cX * (_m + Math.Cos(xy[Y])));
 }
コード例 #5
0
        /// <summary>
        /// The forward transform from geodetic units to linear units
        /// </summary>
        /// <param name="lp">The array of lambda, phi coordinates</param>
        /// <param name="xy">The array of x, y coordinates</param>
        protected override void OnForward(double[] lp, double[] xy)
        {
            double sp   = E * Math.Sin(lp[Phi]);
            double phip = 2 * Math.Atan(Math.Exp(_c * (
                                                     Math.Log(Math.Tan(FortPi + 0.5 * lp[Phi])) - _hlfE * Math.Log((1 + sp) / (1 - sp)))
                                                 + _k)) - HalfPi;
            double lamp  = _c * lp[Lambda];
            double cp    = Math.Cos(phip);
            double phipp = Proj.Aasin(_cosp0 * Math.Sin(phip) - _sinp0 * cp * Math.Cos(lamp));
            double lampp = Proj.Aasin(cp * Math.Sin(lamp) / Math.Cos(phipp));

            xy[X] = _kR * lampp;
            xy[Y] = _kR * Math.Log(Math.Tan(FortPi + 0.5 * phipp));
        }
コード例 #6
0
        /// <summary>
        /// Performs the inverse transfrom from a single coordinate of linear units to the same coordinate in geodetic units
        /// </summary>
        /// <param name="xy">The double linear input x and y values organized into a 1 dimensional array</param>
        /// <param name="lp">The double geodetic output lambda and phi values organized into a 1 dimensional array</param>
        protected override void EllipticalInverse(double[] xy, double[] lp)
        {
            if (_isGuam)
            {
                GuamInverse(xy, lp);
            }

            double c;

            if ((c = Proj.Hypot(xy[X], xy[Y])) < EPS10)
            {
                lp[Phi]    = Phi0;
                lp[Lambda] = 0;
                return;
            }
            if (_mode == Modes.Oblique || _mode == Modes.Equitorial)
            {
                double az;
                double cosAz = Math.Cos(az = Math.Atan2(xy[X], xy[Y]));
                double t     = _cosph0 * cosAz;
                double b     = Es * t / OneEs;
                double a     = -b * t;
                b *= 3 * (1 - a) * _sinph0;
                double d   = c / _N1;
                double e   = d * (1 - d * d * (a * (1 + a) / 6 + b * (1 + 3 * a) * d / 24));
                double f   = 1 - e * e * (a / 2 + b * e / 6);
                double psi = Proj.Aasin(_sinph0 * Math.Cos(e) + t * Math.Sin(e));
                lp[Lambda] = Proj.Aasin(Math.Sin(az) * Math.Sin(e) / Math.Cos(psi));
                if ((t = Math.Abs(psi)) < EPS10)
                {
                    lp[Phi] = 0;
                }
                else if (Math.Abs(t - HalfPi) < 0)
                {
                    lp[Phi] = HalfPi;
                }
                else
                {
                    lp[Phi] = Math.Atan((1 - Es * f * _sinph0 / Math.Sin(psi)) * Math.Tan(psi) /
                                        OneEs);
                }
            }
            else
            {
                /* Polar */
                lp[Phi] = Proj.InvMlfn(_mode == Modes.NorthPole ? _Mp - c : _Mp + c,
                                       Es, _en);
                lp[Lambda] = Math.Atan2(xy[X], _mode == Modes.NorthPole ? -xy[Y] : xy[Y]);
            }
        }
コード例 #7
0
        /// <summary>
        /// Performs the inverse transform from a single coordinate of linear units to the same coordinate in geodetic lambda and
        /// phi units in the special case where the shape of the earth is being approximated as a perfect sphere.
        /// </summary>
        /// <param name="xy">The double linear input x and y values organized into a 1 dimensional array</param>
        /// <param name="lp">The double geodetic output lambda and phi values organized into a 1 dimensional array</param>
        protected override void SphericalInverse(double[] xy, double[] lp)
        {
            double cRh;

            if ((cRh = Proj.Hypot(xy[X], xy[Y])) > Math.PI)
            {
                if (cRh - EPS10 > Math.PI)
                {
                    throw new ProjectionException(20);
                }
                cRh = Math.PI;
            }
            else if (cRh < EPS10)
            {
                lp[Phi]    = Phi0;
                lp[Lambda] = 0;
                return;
            }
            if (_mode == Modes.Oblique || _mode == Modes.Equitorial)
            {
                double sinc = Math.Sin(cRh);
                double cosc = Math.Cos(cRh);
                if (_mode == Modes.Equitorial)
                {
                    lp[Phi] = Proj.Aasin(xy[Y] * sinc / cRh);
                    xy[X]  *= sinc;
                    xy[Y]   = cosc * cRh;
                }
                else
                {
                    lp[Phi] = Proj.Aasin(cosc * _sinph0 + xy[Y] * sinc * _cosph0 /
                                         cRh);
                    xy[Y]  = (cosc - _sinph0 * Math.Sin(lp[Phi])) * cRh;
                    xy[X] *= sinc * _cosph0;
                }
                lp[Lambda] = xy[Y] == 0 ? 0 : Math.Atan2(xy[X], xy[Y]);
            }
            else if (_mode == Modes.NorthPole)
            {
                lp[Phi]    = HalfPi - cRh;
                lp[Lambda] = Math.Atan2(xy[X], -xy[Y]);
            }
            else
            {
                lp[Phi]    = cRh - HalfPi;
                lp[Lambda] = Math.Atan2(xy[X], xy[Y]);
            }
        }
コード例 #8
0
        /// <summary>
        /// The inverse transform from linear units to geodetic units
        /// </summary>
        /// <param name="xy">The double values for the input x and y values stored in an array</param>
        /// <param name="lp">The double values for the output lambda and phi values stored in an array</param>
        protected override void OnInverse(double[] xy, double[] lp)
        {
            xy[Y] /= _cY;
            double c = Math.Cos(lp[Phi] = _tanMode ? Math.Atan(xy[Y]) : Proj.Aasin(xy[Y]));

            lp[Phi]   /= _cP;
            lp[Lambda] = xy[X] / (_cX * Math.Cos(lp[Phi] /= _cP));
            if (_tanMode)
            {
                lp[Lambda] /= c * c;
            }
            else
            {
                lp[Lambda] *= c;
            }
        }
コード例 #9
0
        /// <summary>
        /// Initializes the transform using the parameters from the specified coordinate system information
        /// </summary>
        /// <param name="projInfo">A ProjectionInfo class contains all the standard and custom parameters needed to initialize this transform</param>
        protected override void OnInit(ProjectionInfo projInfo)
        {
            double phip0;

            _hlfE = 0.5 * E;
            double cp = Math.Cos(Phi0);

            cp *= cp;
            _c  = Math.Sqrt(1 + Es * cp * cp * ROneEs);
            double sp = Math.Sin(Phi0);

            _cosp0 = Math.Cos(phip0 = Proj.Aasin(_sinp0 = sp / _c));
            sp    *= E;
            _k     = Math.Log(Math.Tan(FortPi + 0.5 * phip0)) - _c * (
                Math.Log(Math.Tan(FortPi + 0.5 * Phi0)) - _hlfE *
                Math.Log((1 + sp) / (1 - sp)));
            _kR = K0 * Math.Sqrt(OneEs) / (1 - sp * sp);
        }
コード例 #10
0
        /// <summary>
        /// The inverse transform from linear units to geodetic units
        /// </summary>
        /// <param name="xy">The double values for the input x and y values stored in an array</param>
        /// <param name="lp">The double values for the output lambda and phi values stored in an array</param>
        protected override void OnInverse(double[] xy, double[] lp)
        {
            double cz1 = Math.Cos(Proj.Hypot(xy[Y], xy[X] + _hz0));
            double cz2 = Math.Cos(Proj.Hypot(xy[Y], xy[X] - _hz0));
            double s   = cz1 + cz2;
            double d   = cz1 - cz2;

            lp[Lambda] = -Math.Atan2(d, (s * _thz0));
            lp[Phi]    = Proj.Aacos(Proj.Hypot(_thz0 * s, d) * _rhshz0);
            if (xy[Y] < 0)
            {
                lp[Phi] = -lp[Phi];
            }
            /* lam--phi now in system relative to P1--P2 base equator */
            double sp = Math.Sin(lp[Phi]);
            double cp = Math.Cos(lp[Phi]);

            lp[Phi]    = Proj.Aasin(_sa * sp + _ca * cp * (s = Math.Cos(lp[Lambda] -= _lp)));
            lp[Lambda] = Math.Atan2(cp * Math.Sin(lp[Lambda]), _sa * cp * s - _ca * sp) + _lamc;
        }
コード例 #11
0
        /// <summary>
        /// Initializes the transform using the parameters from the specified coordinate system information
        /// </summary>
        /// <param name="projInfo">A ProjectionInfo class contains all the standard and custom parameters needed to initialize this transform</param>
        protected override void OnInit(ProjectionInfo projInfo)
        {
            double pp;

            /* get control point locations */
            double phi1 = projInfo.GetPhi1();
            double lam1 = projInfo.GetLam1();
            double phi2 = projInfo.GetPhi2();
            double lam2 = projInfo.GetLam2();

            if (phi1 == phi2 && lam1 == lam2)
            {
                throw new ProjectionException(-25);
            }
            Lam0   = Proj.Adjlon(0.5 * (lam1 + lam2));
            _dlam2 = Proj.Adjlon(lam2 - lam1);
            _cp1   = Math.Cos(phi1);
            _cp2   = Math.Cos(phi2);
            _sp1   = Math.Sin(phi1);
            _sp2   = Math.Sin(phi2);
            _cs    = _cp1 * _sp2;
            _sc    = _sp1 * _cp2;
            _ccs   = _cp1 * _cp2 * Math.Sin(_dlam2);
            _z02   = Proj.Aacos(_sp1 * _sp2 + _cp1 * _cp2 * Math.Cos(_dlam2));
            _hz0   = .5 * _z02;
            double A12 = Math.Atan2(_cp2 * Math.Sin(_dlam2),
                                    _cp1 * _sp2 - _sp1 * _cp2 * Math.Cos(_dlam2));

            _ca     = Math.Cos(pp = Proj.Aasin(_cp1 * Math.Sin(A12)));
            _sa     = Math.Sin(pp);
            _lp     = Proj.Adjlon(Math.Atan2(_cp1 * Math.Cos(A12), _sp1) - _hz0);
            _dlam2 *= .5;
            _lamc   = HalfPi - Math.Atan2(Math.Sin(A12) * _sp1, Math.Cos(A12)) - _dlam2;
            _thz0   = Math.Tan(_hz0);
            _rhshz0 = .5 / Math.Sin(_hz0);
            _r2z0   = 0.5 / _z02;
            _z02   *= _z02;
        }