コード例 #1
0
        public bool CreatePathInsideBoundary(IntPoint startPoint, IntPoint endPoint, List <IntPoint> pathThatIsInside)
        {
            if (saveDebugData)
            {
                using (StreamWriter sw = File.AppendText("test.txt"))
                {
                    if (boundry)
                    {
                        string pointsString = bounderyPolygons.WriteToString();
                        sw.WriteLine(pointsString);
                    }
                    sw.WriteLine(startPoint.ToString() + "  " + endPoint.ToString());
                }
            }

            if ((endPoint - startPoint).ShorterThen(1500))
            {
                // If the movement is very short (not a lot of time to ooze filament)
                // then don't add any points
                return(true);
            }

            bool addEndpoint = false;

            //Check if we are inside the comb boundaries
            if (!PointIsInsideBoundary(startPoint))
            {
                if (!MovePointInsideBoundary(ref startPoint))
                {
                    //If we fail to move the point inside the comb boundary we need to retract.
                    return(false);
                }

                pathThatIsInside.Add(startPoint);
            }

            if (!PointIsInsideBoundary(endPoint))
            {
                if (!MovePointInsideBoundary(ref endPoint))
                {
                    //If we fail to move the point inside the comb boundary we need to retract.
                    return(false);
                }

                addEndpoint = true;
            }

            // Check if we are crossing any bounderies
            if (!DoesLineCrossBoundery(startPoint, endPoint))
            {
                //We're not crossing any boundaries. So skip the comb generation.
                if (!addEndpoint && pathThatIsInside.Count == 0)
                {
                    //Only skip if we didn't move the start and end point.
                    return(true);
                }
            }

            // Calculate the matrix to change points so they are in the direction of the line segment.
            {
                IntPoint diff = endPoint - startPoint;

                lineToSameYMatrix      = new PointMatrix(diff);
                this.rotatedStartPoint = lineToSameYMatrix.apply(startPoint);
                this.rotatedEndPoint   = lineToSameYMatrix.apply(endPoint);
            }


            // Calculate the minimum and maximum positions where we cross the comb boundary
            CalcMinMax();

            long            nomalizedStartX = rotatedStartPoint.X;
            List <IntPoint> pointList       = new List <IntPoint>();

            // Now walk trough the crossings, for every boundary we cross, find the initial cross point and the exit point.
            // Then add all the points in between to the pointList and continue with the next boundary we will cross,
            // until there are no more boundaries to cross.
            // This gives a path from the start to finish curved around the holes that it encounters.
            while (true)
            {
                // if we go up enough we should run into the boundry
                int abovePolyIndex = GetPolygonIndexAbove(nomalizedStartX);
                if (abovePolyIndex < 0)
                {
                    break;
                }

                pointList.Add(lineToSameYMatrix.unapply(new IntPoint(minXPosition[abovePolyIndex] - 200, rotatedStartPoint.Y)));
                if ((indexOfMinX[abovePolyIndex] - indexOfMaxX[abovePolyIndex] + bounderyPolygons[abovePolyIndex].Count) % bounderyPolygons[abovePolyIndex].Count > (indexOfMaxX[abovePolyIndex] - indexOfMinX[abovePolyIndex] + bounderyPolygons[abovePolyIndex].Count) % bounderyPolygons[abovePolyIndex].Count)
                {
                    for (int i = indexOfMinX[abovePolyIndex]; i != indexOfMaxX[abovePolyIndex]; i = (i < bounderyPolygons[abovePolyIndex].Count - 1) ? (i + 1) : (0))
                    {
                        pointList.Add(GetBounderyPointWithOffset(abovePolyIndex, i));
                    }
                }
                else
                {
                    indexOfMinX[abovePolyIndex]--;
                    if (indexOfMinX[abovePolyIndex] == -1)
                    {
                        indexOfMinX[abovePolyIndex] = bounderyPolygons[abovePolyIndex].Count - 1;
                    }

                    indexOfMaxX[abovePolyIndex]--;
                    if (indexOfMaxX[abovePolyIndex] == -1)
                    {
                        indexOfMaxX[abovePolyIndex] = bounderyPolygons[abovePolyIndex].Count - 1;
                    }

                    for (int i = indexOfMinX[abovePolyIndex]; i != indexOfMaxX[abovePolyIndex]; i = (i > 0) ? (i - 1) : (bounderyPolygons[abovePolyIndex].Count - 1))
                    {
                        pointList.Add(GetBounderyPointWithOffset(abovePolyIndex, i));
                    }
                }
                pointList.Add(lineToSameYMatrix.unapply(new IntPoint(maxXPosition[abovePolyIndex] + 200, rotatedStartPoint.Y)));

                nomalizedStartX = maxXPosition[abovePolyIndex];
            }
            pointList.Add(endPoint);

            if (addEndpoint)
            {
                pointList.Add(endPoint);
            }

#if false
            // Optimize the pointList, skip each point we could already reach by connecting directly to the next point.
            for (int startIndex = 0; startIndex < pointList.Count - 2; startIndex++)
            {
                IntPoint startPosition = pointList[startIndex];
                // make sure there is at least one point between the start and the end to optomize
                if (pointList.Count > startIndex + 2)
                {
                    for (int checkIndex = pointList.Count - 1; checkIndex > startIndex + 1; checkIndex--)
                    {
                        IntPoint checkPosition = pointList[checkIndex];
                        if (!DoesLineCrossBoundery(startPosition, checkPosition))
                        {
                            // Remove all the points from startIndex+1 to checkIndex-1, inclusive.
                            for (int i = startIndex + 1; i < checkIndex; i++)
                            {
                                pointList.RemoveAt(startIndex + 1);
                            }

                            // we removed all the points up to start so we are done with the inner loop
                            break;
                        }
                    }
                }
            }
#endif

            foreach (IntPoint point in pointList)
            {
                pathThatIsInside.Add(point);
            }

            return(true);
        }
コード例 #2
0
		public bool CreatePathInsideBoundary(IntPoint startPoint, IntPoint endPoint, List<IntPoint> pathThatIsInside)
		{
			if (saveDebugData)
			{
				using (StreamWriter sw = File.AppendText("test.txt"))
				{
					if (boundry)
					{
						string pointsString = bounderyPolygons.WriteToString();
						sw.WriteLine(pointsString);
					}
					sw.WriteLine(startPoint.ToString() + "  " + endPoint.ToString());
				}
			}

			if ((endPoint - startPoint).ShorterThen(1500))
			{
				// If the movement is very short (not a lot of time to ooze filament)
				// then don't add any points
				return true;
			}

			bool addEndpoint = false;
			//Check if we are inside the comb boundaries
			if (!PointIsInsideBoundary(startPoint))
			{
				if (!MovePointInsideBoundary(ref startPoint))
				{
					//If we fail to move the point inside the comb boundary we need to retract.
					return false;
				}

				pathThatIsInside.Add(startPoint);
			}

			if (!PointIsInsideBoundary(endPoint))
			{
				if (!MovePointInsideBoundary(ref endPoint))
				{
					//If we fail to move the point inside the comb boundary we need to retract.
					return false;
				}

				addEndpoint = true;
			}

			// Check if we are crossing any bounderies
			if (!DoesLineCrossBoundery(startPoint, endPoint))
			{
				//We're not crossing any boundaries. So skip the comb generation.
				if (!addEndpoint && pathThatIsInside.Count == 0)
				{
					//Only skip if we didn't move the start and end point.
					return true;
				}
			}

			// Calculate the matrix to change points so they are in the direction of the line segment.
			{
				IntPoint diff = endPoint - startPoint;

				lineToSameYMatrix = new PointMatrix(diff);
				this.rotatedStartPoint = lineToSameYMatrix.apply(startPoint);
				this.rotatedEndPoint = lineToSameYMatrix.apply(endPoint);
			}


			// Calculate the minimum and maximum positions where we cross the comb boundary
			CalcMinMax();

			long nomalizedStartX = rotatedStartPoint.X;
			List<IntPoint> pointList = new List<IntPoint>();
			// Now walk trough the crossings, for every boundary we cross, find the initial cross point and the exit point.
			// Then add all the points in between to the pointList and continue with the next boundary we will cross,
			// until there are no more boundaries to cross.
			// This gives a path from the start to finish curved around the holes that it encounters.
			while (true)
			{
				// if we go up enough we should run into the boundry
				int abovePolyIndex = GetPolygonIndexAbove(nomalizedStartX);
				if (abovePolyIndex < 0)
				{
					break;
				}

				pointList.Add(lineToSameYMatrix.unapply(new IntPoint(minXPosition[abovePolyIndex] - 200, rotatedStartPoint.Y)));
				if ((indexOfMinX[abovePolyIndex] - indexOfMaxX[abovePolyIndex] + bounderyPolygons[abovePolyIndex].Count) % bounderyPolygons[abovePolyIndex].Count > (indexOfMaxX[abovePolyIndex] - indexOfMinX[abovePolyIndex] + bounderyPolygons[abovePolyIndex].Count) % bounderyPolygons[abovePolyIndex].Count)
				{
					for (int i = indexOfMinX[abovePolyIndex]; i != indexOfMaxX[abovePolyIndex]; i = (i < bounderyPolygons[abovePolyIndex].Count - 1) ? (i + 1) : (0))
					{
						pointList.Add(GetBounderyPointWithOffset(abovePolyIndex, i));
					}
				}
				else
				{
					indexOfMinX[abovePolyIndex]--;
					if (indexOfMinX[abovePolyIndex] == -1)
					{
						indexOfMinX[abovePolyIndex] = bounderyPolygons[abovePolyIndex].Count - 1;
					}

					indexOfMaxX[abovePolyIndex]--;
					if (indexOfMaxX[abovePolyIndex] == -1)
					{
						indexOfMaxX[abovePolyIndex] = bounderyPolygons[abovePolyIndex].Count - 1;
					}

					for (int i = indexOfMinX[abovePolyIndex]; i != indexOfMaxX[abovePolyIndex]; i = (i > 0) ? (i - 1) : (bounderyPolygons[abovePolyIndex].Count - 1))
					{
						pointList.Add(GetBounderyPointWithOffset(abovePolyIndex, i));
					}
				}
				pointList.Add(lineToSameYMatrix.unapply(new IntPoint(maxXPosition[abovePolyIndex] + 200, rotatedStartPoint.Y)));

				nomalizedStartX = maxXPosition[abovePolyIndex];
			}
			pointList.Add(endPoint);

			if (addEndpoint)
			{
				pointList.Add(endPoint);
			}

#if false
			// Optimize the pointList, skip each point we could already reach by connecting directly to the next point.
			for (int startIndex = 0; startIndex < pointList.Count - 2; startIndex++)
			{
				IntPoint startPosition = pointList[startIndex];
				// make sure there is at least one point between the start and the end to optomize
				if (pointList.Count > startIndex + 2)
				{
					for (int checkIndex = pointList.Count - 1; checkIndex > startIndex + 1; checkIndex--)
					{
						IntPoint checkPosition = pointList[checkIndex];
						if (!DoesLineCrossBoundery(startPosition, checkPosition))
						{
							// Remove all the points from startIndex+1 to checkIndex-1, inclusive.
							for (int i = startIndex + 1; i < checkIndex; i++)
							{
								pointList.RemoveAt(startIndex + 1);
							}

							// we removed all the points up to start so we are done with the inner loop
							break;
						}
					}
				}
			}
#endif

			foreach (IntPoint point in pointList)
			{
				pathThatIsInside.Add(point);
			}

			return true;
		}