/// <summary> /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// </summary> /// <param name="x">The location at which to compute the cumulative distribution function.</param> /// <returns>the cumulative distribution at location <paramref name="x"/>.</returns> public double CumulativeDistribution(double x) { // TODO JVG we can probably do a better job for Cauchy special case if (Double.IsPositiveInfinity(_freedom)) { return(Normal.CDF(_location, _scale, x)); } var k = (x - _location) / _scale; var h = _freedom / (_freedom + (k * k)); var ib = 0.5 * SpecialFunctions.BetaRegularized(_freedom / 2.0, 0.5, h); return(x <= _location ? ib : 1.0 - ib); }
/// <summary> /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// </summary> /// <param name="x">The location at which to compute the cumulative distribution function.</param> /// <param name="location">The location (μ) of the distribution.</param> /// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param> /// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param> /// <returns>the cumulative distribution at location <paramref name="x"/>.</returns> /// <seealso cref="CumulativeDistribution"/> public static double CDF(double location, double scale, double freedom, double x) { if (scale <= 0.0 || freedom <= 0.0) { throw new ArgumentException(Resources.InvalidDistributionParameters); } // TODO JVG we can probably do a better job for Cauchy special case if (double.IsPositiveInfinity(freedom)) { return(Normal.CDF(location, scale, x)); } var k = (x - location) / scale; var h = freedom / (freedom + (k * k)); var ib = 0.5 * SpecialFunctions.BetaRegularized(freedom / 2.0, 0.5, h); return(x <= location ? ib : 1.0 - ib); }
/// <summary> /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// </summary> /// <param name="x">The location at which to compute the cumulative distribution function.</param> /// <param name="alpha">The stability (α) of the distribution. Range: 2 ≥ α > 0.</param> /// <param name="beta">The skewness (β) of the distribution. Range: 1 ≥ β ≥ -1.</param> /// <param name="scale">The scale (c) of the distribution. Range: c > 0.</param> /// <param name="location">The location (μ) of the distribution.</param> /// <returns>the cumulative distribution at location <paramref name="x"/>.</returns> /// <seealso cref="CumulativeDistribution"/> public static double CDF(double alpha, double beta, double scale, double location, double x) { if (alpha <= 0.0 || alpha > 2.0 || beta < -1.0 || beta > 1.0 || scale <= 0.0) { throw new ArgumentException(Resources.InvalidDistributionParameters); } if (alpha == 2d) { return(Normal.CDF(location, Constants.Sqrt2 * scale, x)); } if (alpha == 1d && beta == 0d) { return(Cauchy.CDF(location, scale, x)); } if (alpha == 0.5d && beta == 1d) { return(SpecialFunctions.Erfc(Math.Sqrt(scale / (2 * (x - location))))); } throw new NotSupportedException(); }
internal static double CumulativeDistributionImpl(double mu, double lambda, double x) { return(Normal.CDF(0, 1, Math.Sqrt(lambda / x) * (x / mu - 1)) + Math.Exp(2 * lambda / mu) * Normal.CDF(0, 1, -Math.Sqrt(lambda / x) * (x / mu + 1))); }