/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/Log-normal_distribution">LogNormal distribution</a> public void Run() { // 1. Initialize the new instance of the LogNormal distribution class with parameters Mu = 0, Sigma = 1 var logNormal = new LogNormal(0, 1); Console.WriteLine(@"1. Initialize the new instance of the LogNormal distribution class with parameters Mu = {0}, Sigma = {1}", logNormal.Mu, logNormal.Sigma); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", logNormal); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", logNormal.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", logNormal.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", logNormal.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", logNormal.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", logNormal.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", logNormal.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", logNormal.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", logNormal.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", logNormal.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", logNormal.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", logNormal.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", logNormal.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples Console.WriteLine(@"3. Generate 10 samples"); for (var i = 0; i < 10; i++) { Console.Write(logNormal.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the LogNormal(0, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the LogNormal(0, 1) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = logNormal.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the LogNormal(0, 0.5) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the LogNormal(0, 0.5) distribution and display histogram"); logNormal.Sigma = 0.5; for (var i = 0; i < data.Length; i++) { data[i] = logNormal.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the LogNormal(5, 0.25) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the LogNormal(5, 0.25) distribution and display histogram"); logNormal.Mu = 5; logNormal.Sigma = 0.25; for (var i = 0; i < data.Length; i++) { data[i] = logNormal.Sample(); } ConsoleHelper.DisplayHistogram(data); }
public void ValidateCumulativeDistribution(double mu, double sigma, double x, double f) { var n = new LogNormal(mu, sigma); AssertHelpers.AlmostEqualRelative(f, n.CumulativeDistribution(x), 7); AssertHelpers.AlmostEqualRelative(f, LogNormal.CDF(mu, sigma, x), 7); }