/// <summary> /// /// </summary> /// <param name="context"></param> public SpatialTransformerDescriptor(CudaDNNContext context) { _handle = context.Handle; _desc = new cudnnSpatialTransformerDescriptor(); res = CudaDNNNativeMethods.cudnnCreateSpatialTransformerDescriptor(ref _desc); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnCreateSpatialTransformerDescriptor", res)); if (res != cudnnStatus.Success) throw new CudaDNNException(res); }
/// <summary> /// </summary> public LRNDescriptor(CudaDNNContext context) { _handle = context.Handle; _desc = new cudnnLRNDescriptor(); res = CudaDNNNativeMethods.cudnnCreateLRNDescriptor(ref _desc); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnCreateLRNDescriptor", res)); if (res != cudnnStatus.Success) { throw new CudaDNNException(res); } }
public SizeT GetAlgorithmSpaceSize(CudaDNNContext ctx) { SizeT size = new SizeT(); res = CudaDNNNativeMethods.cudnnGetAlgorithmSpaceSize(ctx.Handle, _desc, ref size); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnGetAlgorithmSpaceSize", res)); if (res != cudnnStatus.Success) { throw new CudaDNNException(res); } return(size); }
public void RestoreAlgorithm(CudaDNNContext ctx, byte[] algoSpace) { GCHandle handle = GCHandle.Alloc(algoSpace, GCHandleType.Pinned); try { IntPtr ptr = handle.AddrOfPinnedObject(); res = CudaDNNNativeMethods.cudnnRestoreAlgorithm(ctx.Handle, ptr, algoSpace.Length, _desc); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnRestoreAlgorithm", res)); } finally { handle.Free(); } if (res != cudnnStatus.Success) { throw new CudaDNNException(res); } }
/// <summary> /// return the workspace size needed for ctc /// </summary> /// <param name="handle">Handle to a previously created cuDNN context.</param> /// <param name="probsDesc">Handle to the previously initialized probabilities tensor descriptor.</param> /// <param name="gradientsDesc">Handle to a previously initialized gradients tensor descriptor.</param> /// <param name="labels">Pointer to a previously initialized labels list.</param> /// <param name="labelLengths">Pointer to a previously initialized lengths list, to walk the above labels list.</param> /// <param name="inputLengths">Pointer to a previously initialized list of the lengths of the timing steps in each batch.</param> /// <param name="algo">Enumerant that specifies the chosen CTC loss algorithm</param> /// <returns>Amount of GPU memory needed as workspace to be able to execute the CTC /// loss computation with the specified algo.</returns> public SizeT CTCLoss(CudaDNNContext handle, TensorDescriptor probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the mini batch size, A is the alphabet size) */ int[] labels, /* labels, in CPU memory */ int[] labelLengths, /* the length of each label, in CPU memory */ int[] inputLengths, /* the lengths of timing steps in each batch, in CPU memory */ TensorDescriptor gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */ cudnnCTCLossAlgo algo /* algorithm selected, supported now 0 and 1 */ ) { SizeT size = new SizeT(); res = CudaDNNNativeMethods.cudnnGetCTCLossWorkspaceSize(handle.Handle, probsDesc.Desc, gradientsDesc.Desc, labels, labelLengths, inputLengths, algo, _desc, ref size); Debug.Write("");//Line(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnGetCTCLossWorkspaceSize", res)); if (res != cudnnStatus.Success) { throw new CudaDNNException(res); } return(size); }
/// <summary> /// This function returns the ctc costs and gradients, given the probabilities and labels. /// </summary> /// <param name="handle">Handle to a previously created cuDNN context.</param> /// <param name="probsDesc">Handle to the previously initialized probabilities tensor descriptor.</param> /// <param name="probs">Pointer to a previously initialized probabilities tensor.</param> /// <param name="labels">Pointer to a previously initialized labels list.</param> /// <param name="labelLengths">Pointer to a previously initialized lengths list, to walk the above labels list.</param> /// <param name="inputLengths">Pointer to a previously initialized list of the lengths of the timing steps in each batch.</param> /// <param name="costs">Pointer to the computed costs of CTC.</param> /// <param name="gradientsDesc">Handle to a previously initialized gradients tensor descriptor.</param> /// <param name="gradients">Pointer to the computed gradients of CTC.</param> /// <param name="algo">Enumerant that specifies the chosen CTC loss algorithm.</param> /// <param name="workspace">Pointer to GPU memory of a workspace needed to able to execute the specified algorithm.</param> public void CTCLoss(CudaDNNContext handle, TensorDescriptor probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the mini batch size, A is the alphabet size) */ CudaDeviceVariable <double> probs, /* probabilities after softmax, in GPU memory */ int[] labels, /* labels, in CPU memory */ int[] labelLengths, /* the length of each label, in CPU memory */ int[] inputLengths, /* the lengths of timing steps in each batch, in CPU memory */ CudaDeviceVariable <double> costs, /* the returned costs of CTC, in GPU memory */ TensorDescriptor gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */ CudaDeviceVariable <double> gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */ cudnnCTCLossAlgo algo, /* algorithm selected, supported now 0 and 1 */ CudaDeviceVariable <byte> workspace /* pointer to the workspace, in GPU memory */ ) { res = CudaDNNNativeMethods.cudnnCTCLoss(handle.Handle, probsDesc.Desc, probs.DevicePointer, labels, labelLengths, inputLengths, costs.DevicePointer, gradientsDesc.Desc, gradients.DevicePointer, algo, _desc, workspace.DevicePointer, workspace.SizeInBytes); Debug.Write("");//Line(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnCTCLoss", res)); if (res != cudnnStatus.Success) { throw new CudaDNNException(res); } }