static void Main(string[] args) { Console.WriteLine("<<<Mamecog sample>>>"); // Conv2DとDenseのインスタンスを生成する Conv2D conv1 = new Conv2D(32, 1, 3, 3); Conv2D conv2 = new Conv2D(64, 32, 3, 3); Dense dense = new Dense(10, 1600); // Conv2DとDenseのカーネルとバイアスをファイルから読み込む conv1.LoadKernelAndBias("conv2d_k.bin", "conv2d_b.bin"); conv2.LoadKernelAndBias("conv2d_1_k.bin", "conv2d_1_b.bin"); dense.LoadKernelAndBias("dense_k.bin", "dense_b.bin"); // 各層の入出力の格納先を用意する LayerData2D input0 = new LayerData2D(1, 28, 28); LayerData2D conv1output = new LayerData2D(32, 26, 26); LayerData2D pool1output = new LayerData2D(32, 13, 13); LayerData2D conv2output = new LayerData2D(64, 11, 11); LayerData2D pool2output = new LayerData2D(64, 5, 5); float[] pool2flatten = new float[64 * 5 * 5]; float[] denseOutput = new float[10]; // テスト用の入力データを用意する Console.WriteLine("<<<Input>>>"); input0.Cells = testInput; input0.PrintCellValues(); // 各層の出力を順に計算する conv1.Conv(conv1output, input0, false); conv1.ReLU(conv1output); MaxPool2D.Calc(pool1output, conv1output, 2); conv2.Conv(conv2output, pool1output, false); conv2.ReLU(conv2output); MaxPool2D.Calc(pool2output, conv2output, 2); pool2output.Flatten(pool2flatten); dense.Calc(denseOutput, pool2flatten); dense.Softmax(denseOutput); // Dense層の出力を表示する Console.WriteLine("<<<Output>>>"); for (int i = 0; i < denseOutput.Length; i++) { Console.WriteLine("Dense[" + i.ToString() + "] = " + denseOutput[i].ToString("F4")); } }
static void Main(string[] args) { // テスト用の入力データを用意する Console.WriteLine("テスト画像読み込み"); LayerData2D input1 = new LayerData2D(3, 224, 224); string inputFilename = "test_input.png"; // 224x224ピクセルのRGB画像 using (Bitmap inputImage = new Bitmap(Image.FromFile(inputFilename))) { Debug.Assert(inputImage.Height == 224); Debug.Assert(inputImage.Width == 224); for (int y = 0; y < inputImage.Height; y++) { for (int x = 0; x < inputImage.Width; x++) { Color pixelData = inputImage.GetPixel(x, y); float r = (float)pixelData.R - 123.68f; float g = (float)pixelData.G - 116.779f; float b = (float)pixelData.B - 103.939f; input1.SetVal(0, y, x, b); // BGR input1.SetVal(1, y, x, g); input1.SetVal(2, y, x, r); } } } // Conv2DとDenseのインスタンスを生成する Conv2D block1Conv1 = new Conv2D(64, 3, 3, 3); Conv2D block1Conv2 = new Conv2D(64, 64, 3, 3); Conv2D block2Conv1 = new Conv2D(128, 64, 3, 3); Conv2D block2Conv2 = new Conv2D(128, 128, 3, 3); Conv2D block3Conv1 = new Conv2D(256, 128, 3, 3); Conv2D block3Conv2 = new Conv2D(256, 256, 3, 3); Conv2D block3Conv3 = new Conv2D(256, 256, 3, 3); Conv2D block4Conv1 = new Conv2D(512, 256, 3, 3); Conv2D block4Conv2 = new Conv2D(512, 512, 3, 3); Conv2D block4Conv3 = new Conv2D(512, 512, 3, 3); Conv2D block5Conv1 = new Conv2D(512, 512, 3, 3); Conv2D block5Conv2 = new Conv2D(512, 512, 3, 3); Conv2D block5Conv3 = new Conv2D(512, 512, 3, 3); Dense fc1 = new Dense(4096, 25088); Dense fc2 = new Dense(4096, 4096); Dense predictions = new Dense(1000, 4096); // Conv2DとDenseのカーネルとバイアスをファイルから読み込む Console.WriteLine("学習済みモデル読み込み"); block1Conv1.LoadKernelAndBias("block1_conv1_k.bin", "block1_conv1_b.bin"); block1Conv2.LoadKernelAndBias("block1_conv2_k.bin", "block1_conv2_b.bin"); block2Conv1.LoadKernelAndBias("block2_conv1_k.bin", "block2_conv1_b.bin"); block2Conv2.LoadKernelAndBias("block2_conv2_k.bin", "block2_conv2_b.bin"); block3Conv1.LoadKernelAndBias("block3_conv1_k.bin", "block3_conv1_b.bin"); block3Conv2.LoadKernelAndBias("block3_conv2_k.bin", "block3_conv2_b.bin"); block3Conv3.LoadKernelAndBias("block3_conv3_k.bin", "block3_conv3_b.bin"); block4Conv1.LoadKernelAndBias("block4_conv1_k.bin", "block4_conv1_b.bin"); block4Conv2.LoadKernelAndBias("block4_conv2_k.bin", "block4_conv2_b.bin"); block4Conv3.LoadKernelAndBias("block4_conv3_k.bin", "block4_conv3_b.bin"); block5Conv1.LoadKernelAndBias("block5_conv1_k.bin", "block5_conv1_b.bin"); block5Conv2.LoadKernelAndBias("block5_conv2_k.bin", "block5_conv2_b.bin"); block5Conv3.LoadKernelAndBias("block5_conv3_k.bin", "block5_conv3_b.bin"); fc1.LoadKernelAndBias("fc1_k.bin", "fc1_b.bin"); fc2.LoadKernelAndBias("fc2_k.bin", "fc2_b.bin"); predictions.LoadKernelAndBias("predictions_k.bin", "predictions_b.bin"); // 各層の入出力の格納先を用意する LayerData2D block1Conv1Output = new LayerData2D(64, 224, 224); LayerData2D block1Conv2Output = new LayerData2D(64, 224, 224); LayerData2D block1PoolOutput = new LayerData2D(64, 112, 112); LayerData2D block2Conv1Output = new LayerData2D(128, 112, 112); LayerData2D block2Conv2Output = new LayerData2D(128, 112, 112); LayerData2D block2PoolOutput = new LayerData2D(128, 56, 56); LayerData2D block3Conv1Output = new LayerData2D(256, 56, 56); LayerData2D block3Conv2Output = new LayerData2D(256, 56, 56); LayerData2D block3Conv3Output = new LayerData2D(256, 56, 56); LayerData2D block3PoolOutput = new LayerData2D(256, 28, 28); LayerData2D block4Conv1Output = new LayerData2D(512, 28, 28); LayerData2D block4Conv2Output = new LayerData2D(512, 28, 28); LayerData2D block4Conv3Output = new LayerData2D(512, 28, 28); LayerData2D block4PoolOutput = new LayerData2D(512, 14, 14); LayerData2D block5Conv1Output = new LayerData2D(512, 14, 14); LayerData2D block5Conv2Output = new LayerData2D(512, 14, 14); LayerData2D block5Conv3Output = new LayerData2D(512, 14, 14); LayerData2D block5PoolOutput = new LayerData2D(512, 7, 7); float[] flattenOutput = new float[25088]; float[] fc1Output = new float[4096]; float[] fc2Output = new float[4096]; float[] predictionsOutput = new float[1000]; // 各層の出力を順に計算する Console.WriteLine("CNN実行開始"); var sw = new System.Diagnostics.Stopwatch(); sw.Start(); Console.WriteLine("Block 1"); block1Conv1.Conv(block1Conv1Output, input1, true); block1Conv1.ReLU(block1Conv1Output); block1Conv2.Conv(block1Conv2Output, block1Conv1Output, true); block1Conv2.ReLU(block1Conv2Output); MaxPool2D.Calc(block1PoolOutput, block1Conv2Output, 2); Console.WriteLine("Block 2"); block2Conv1.Conv(block2Conv1Output, block1PoolOutput, true); block2Conv1.ReLU(block2Conv1Output); block2Conv2.Conv(block2Conv2Output, block2Conv1Output, true); block2Conv2.ReLU(block2Conv2Output); MaxPool2D.Calc(block2PoolOutput, block2Conv2Output, 2); Console.WriteLine("Block 3"); block3Conv1.Conv(block3Conv1Output, block2PoolOutput, true); block3Conv1.ReLU(block3Conv1Output); block3Conv2.Conv(block3Conv2Output, block3Conv1Output, true); block3Conv2.ReLU(block3Conv2Output); block3Conv3.Conv(block3Conv3Output, block3Conv2Output, true); block3Conv3.ReLU(block3Conv3Output); MaxPool2D.Calc(block3PoolOutput, block3Conv3Output, 2); Console.WriteLine("Block 4"); block4Conv1.Conv(block4Conv1Output, block3PoolOutput, true); block4Conv1.ReLU(block4Conv1Output); block4Conv2.Conv(block4Conv2Output, block4Conv1Output, true); block4Conv2.ReLU(block4Conv2Output); block4Conv3.Conv(block4Conv3Output, block4Conv2Output, true); block4Conv3.ReLU(block4Conv3Output); MaxPool2D.Calc(block4PoolOutput, block4Conv3Output, 2); Console.WriteLine("Block 5"); block5Conv1.Conv(block5Conv1Output, block4PoolOutput, true); block5Conv1.ReLU(block5Conv1Output); block5Conv2.Conv(block5Conv2Output, block5Conv1Output, true); block5Conv2.ReLU(block5Conv2Output); block5Conv3.Conv(block5Conv3Output, block5Conv2Output, true); block5Conv3.ReLU(block5Conv3Output); MaxPool2D.Calc(block5PoolOutput, block5Conv3Output, 2); Console.WriteLine("FC"); block5PoolOutput.Flatten(flattenOutput); fc1.Calc(fc1Output, flattenOutput); fc1.ReLU(fc1Output); fc2.Calc(fc2Output, fc1Output); fc2.ReLU(fc2Output); predictions.Calc(predictionsOutput, fc2Output); predictions.Softmax(predictionsOutput); sw.Stop(); TimeSpan ts = sw.Elapsed; Console.WriteLine("CNN実行完了:実行時間 = {0}", ts); // VGG16モデルの学習済み1000カテゴリのうち先頭10カテゴリ分の確率を出力 for (int i = 0; i < 10; i++) { Console.WriteLine("カテゴリ[{0}] = {1}", i, predictionsOutput[i]); } }