コード例 #1
0
 private void btnClear_Click(object sender, EventArgs e)
 {
     txtMain.Clear();
     btnAnalyze.Enabled = btnCreateNeuralNet.Enabled = btnOutputNormalized.Enabled = btnTrain.Enabled =
         btnSaveNetwork.Enabled = btnLoadNetwork.Enabled = btnTestNetwork.Enabled = false;
     btnOpen.Enabled = true;
     m_data = null;
     m_predictor = null;
 }
コード例 #2
0
        public Predictor(String fileName, TextBox txtOutput, CSVData data, double percentValidation)
        {
            m_network = (BasicNetwork)EncogDirectoryPersistence.LoadObject(new FileInfo(fileName));
            m_txtOutputWindow = txtOutput;
            m_data = data;

            // Populate the input and output arrays
            LoadData(percentValidation);

            m_train = new Backpropagation(m_network, new BasicMLDataSet(m_inputTraining, m_outputTraining));
        }
コード例 #3
0
        public Predictor(TextBox txtOutput, CSVData data, int hiddenNodes, double percentValidation)
        {
            m_txtOutputWindow = txtOutput;
            m_data = data;

            // Populate the input and output arrays
            LoadData(percentValidation);

            // Create Neural Network
            m_network = new BasicNetwork();
            m_network.AddLayer(new BasicLayer(null, true, m_data.InputNodes));
            m_network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, hiddenNodes));
            m_network.AddLayer(new BasicLayer(new ActivationSigmoid(), false, m_data.OutputNodes));
            m_network.Structure.FinalizeStructure();
            m_network.Reset();

            m_train = new Backpropagation(m_network, new BasicMLDataSet(m_inputTraining, m_outputTraining));
        }
コード例 #4
0
        private void btnOpen_Click(object sender, EventArgs e)
        {
            var open = new OpenFileDialog();
            txtMain.AppendText(String.Format("Open File Result: {0}{1}",open.ShowDialog().ToString(),
                Environment.NewLine));
            txtMain.AppendText(String.Format("File Name: {0}{1}", open.FileName, Environment.NewLine));
            m_data = new CSVData(open.FileName);

            txtInputNodes.Text = m_data.InputNodes.ToString();
            txtOutputNodes.Text = m_data.OutputNodes.ToString();
            txtTotalRecords.Text = (m_data.Rows - 1).ToString();
            UpdateTrainingSetSize();

            btnOpen.Enabled = false;
            btnCreateNeuralNet.Enabled = true;
            btnAnalyze.Enabled = true;
            btnLoadNetwork.Enabled = true;
        }