/// <summary> /// Initializes the environment, configures it and initialized the Academy. /// </summary> void InitializeEnvironment() { EnableAutomaticStepping(); var floatProperties = new FloatPropertiesChannel(); FloatProperties = floatProperties; // Try to launch the communicator by using the arguments passed at launch var port = ReadPortFromArgs(); if (port > 0) { Communicator = new RpcCommunicator( new CommunicatorInitParameters { port = port } ); } if (Communicator != null) { Communicator.RegisterSideChannel(new EngineConfigurationChannel()); Communicator.RegisterSideChannel(floatProperties); // We try to exchange the first message with Python. If this fails, it means // no Python Process is ready to train the environment. In this case, the //environment must use Inference. try { var unityRlInitParameters = Communicator.Initialize( new CommunicatorInitParameters { version = k_ApiVersion, name = "AcademySingleton", }); UnityEngine.Random.InitState(unityRlInitParameters.seed); } catch { Debug.Log($"" + $"Couldn't connect to trainer on port {port} using API version {k_ApiVersion}. " + "Will perform inference instead." ); Communicator = null; } if (Communicator != null) { Communicator.QuitCommandReceived += OnQuitCommandReceived; Communicator.ResetCommandReceived += OnResetCommand; } } // If a communicator is enabled/provided, then we assume we are in // training mode. In the absence of a communicator, we assume we are // in inference mode. ResetActions(); }
/// <summary> /// Shut down the Academy. /// </summary> public void Dispose() { DisableAutomaticStepping(); // Signal to listeners that the academy is being destroyed now DestroyAction?.Invoke(); Communicator?.Dispose(); Communicator = null; if (m_ModelRunners != null) { foreach (var mr in m_ModelRunners) { mr.Dispose(); } m_ModelRunners = null; } // Clear out the actions so we're not keeping references to any old objects ResetActions(); // TODO - Pass worker ID or some other identifier, // so that multiple envs won't overwrite each others stats. TimerStack.Instance.SaveJsonTimers(); FloatProperties = null; m_Initialized = false; // Reset the Lazy instance s_Lazy = new Lazy <Academy>(() => new Academy()); }
/// <summary> /// Initializes the environment, configures it and initialized the Academy. /// </summary> void InitializeEnvironment() { m_OriginalGravity = Physics.gravity; m_OriginalFixedDeltaTime = Time.fixedDeltaTime; m_OriginalMaximumDeltaTime = Time.maximumDeltaTime; var floatProperties = new FloatPropertiesChannel(); FloatProperties = floatProperties; InitializeAcademy(); // Try to launch the communicator by using the arguments passed at launch var port = ReadPortFromArgs(); if (port > 0) { Communicator = new RpcCommunicator( new CommunicatorInitParameters { port = port } ); } if (Communicator != null) { Communicator.RegisterSideChannel(new EngineConfigurationChannel()); Communicator.RegisterSideChannel(floatProperties); // We try to exchange the first message with Python. If this fails, it means // no Python Process is ready to train the environment. In this case, the //environment must use Inference. try { var unityRLInitParameters = Communicator.Initialize( new CommunicatorInitParameters { version = k_ApiVersion, name = gameObject.name, }); Random.InitState(unityRLInitParameters.seed); } catch { Debug.Log($"" + $"Couldn't connect to trainer on port {port} using API version {k_ApiVersion}. " + "Will perform inference instead." ); Communicator = null; } if (Communicator != null) { Communicator.QuitCommandReceived += OnQuitCommandReceived; Communicator.ResetCommandReceived += OnResetCommand; } } // If a communicator is enabled/provided, then we assume we are in // training mode. In the absence of a communicator, we assume we are // in inference mode. DecideAction += () => { }; DestroyAction += () => { }; AgentSetStatus += i => { }; AgentResetIfDone += () => { }; AgentSendState += () => { }; AgentAct += () => { }; AgentForceReset += () => { }; }