コード例 #1
0
ファイル: CFEM_CALC.cs プロジェクト: 777ondro/sw-en
        CModel TopoModelFile; // Create topological model file

        #endregion Fields

        #region Constructors

        /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
        // Constructor - new
        public CFEM_CALC(CModel model, bool bDebugging)
        {
            // Load Topological model
            TopoModelFile = new CModel();
            TopoModelFile = model;

            // Generate FEM model data from Topological model
            // Prepare solver data
            // Fill local and global matrices of FEM elements

            FEMModel = new CGenex(TopoModelFile);

            ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Temp - display matrices

            if (bDebugging)
            {
                for (int i = 0; i < FEMModel.m_arrFemMembers.Length; i++)
                {
                    // Member ID
                    Console.WriteLine("Member ID: " + FEMModel.m_arrFemMembers[i].ID + "\n");
                    // kij_0 - local stiffeness matrix       6 x  6
                    Console.WriteLine("Local stiffeness matrix k" + FEMModel.m_arrFemMembers[i].NodeStart.ID + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "0 - Dimensions: 6 x 6 \n");
                    FEMModel.m_arrFemMembers[i].m_fkLocMatr.Print2DMatrixFormated();
                    // A  Tranformation Rotation Matrixes    6 x  6
                    Console.WriteLine("Tranformation rotation matrix A - Dimensions: 6 x 6 \n");
                    FEMModel.m_arrFemMembers[i].m_fATRMatr3D.Print2DMatrixFormated();
                    // B  Transfer Matrixes                  6 x  6
                    Console.WriteLine("Transfer matrix B - Dimensions: 6 x 6 \n");
                    FEMModel.m_arrFemMembers[i].m_fBTTMatr3D.Print2DMatrixFormated();
                    // Kij - global matrix of member         12 x 12
                    Console.WriteLine("Global stiffeness matrix K" + FEMModel.m_arrFemMembers[i].NodeStart.ID + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "0 - Dimensions: 12 x 12 \n");
                    FEMModel.m_arrFemMembers[i].m_fKGlobM.Print2DMatrixFormated_ABxCD(FEMModel.m_arrFemMembers[i].m_fKGlobM.m_fArrMembersABxCD);
                    // Element Load Vectors                  2 x 6
                    Console.WriteLine("Member load vector - primary end forces in LCS at start node ID: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_LCS_StNode.Print1DVector();
                    Console.WriteLine("Member load vector - primary end forces in LCS at end node ID: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_LCS_EnNode.Print1DVector();
                    Console.WriteLine("Member load vector - primary end forces in GCS at start node ID: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_GCS_StNode.Print1DVector();
                    Console.WriteLine("Member load vector - primary end forces in GCS at end node ID: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_GCS_EnNode.Print1DVector();
                }
            }

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Set Global Code Number of Nodes / Nastavit globalne kodove cisla uzlov
            // Save indexes of nodes and DOF which are free and represent vector of uknown variables in solution
            SetNodesGlobCodeNo(); // Nastavi DOF v uzloch a ich globalne kodove cisla, konecne CodeNo urci velkost matice konstrukcie

            // Fill members of structure global vector of displacement
            // Now we know number of not restrained DOF, so we can allocate array size
            m_fDisp_Vector_CN = new int[m_iCodeNo, 3]; // 1st - global DOF code number, 2nd - Node index, 3rd - local code number of DOF in NODE

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Save it as array of arrays n x 2 (1st value is index - node index (0 - n-1) , 2nd value is DOF index (0-5)
            // n - total number of nodes in model
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            FillGlobalDisplCodeNo();

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Right side of Equation System
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Stiffeness Matrix of Structure - Allocate Memory (Matrix Size)
            m_M_K_Structure = new CMatrix(m_iCodeNo);

            // Fill Global Stiffeness Matrix
            FillGlobalMatrix();

            // Global Stiffeness Matrix    m_iCodeNo x  m_iCodeNo
            if (bDebugging)
            {
                Console.WriteLine("Global stiffeness matrix - Dimensions: " + m_iCodeNo + " x " + m_iCodeNo + "\n");
                m_M_K_Structure.Print2DMatrixFormated();
            }

            // Auxiliary temporary transformation from 2D to 1D array / from float do double
            // Pomocne prevody medzi jednorozmernym, dvojrozmernym polom a triedou Matrix,
            // bude nutne zladit a urcit jeden format v akom budeme pracovat s datami a potom zmazat

            CArray objArray = new CArray();
            // Convert Size
            float[] m_M_K_fTemp1D = objArray.ArrTranf2Dto1D(m_M_K_Structure.m_fArrMembers);
            // Convert Type
            double[] m_M_K_dTemp1D = objArray.ArrConverFloatToDouble1D(m_M_K_fTemp1D);

            MatrixF64 objMatrix = new MatrixF64(m_iCodeNo, m_iCodeNo, m_M_K_dTemp1D);
            // Print Created Matrix of MatrixF64 Class
            if (bDebugging)
            {
                Console.WriteLine("Global stiffeness matrix in F64 Class - Dimensions: " + m_iCodeNo + " x " + m_iCodeNo + "\n");
                objMatrix.WriteLine();
            }
            // Get Inverse Global Stiffeness Matrix
            MatrixF64 objMatrixInv = objMatrix.Inverse();
            // Print Inverse Matrix
            if (bDebugging)
            {
                Console.WriteLine("Inverse global stiffeness matrix - Dimensions: " + m_iCodeNo + " x " + m_iCodeNo + "\n");
                objMatrixInv.WriteLine();
            }
            // Convert Type
            float[] m_M_K_Inv_fTemp1D = objArray.ArrConverMatrixF64ToFloat1D(objMatrixInv);
            // Inverse Global Stiffeness Matrix of Structure - Allocate Memory (Matrix Size)
            CMatrix m_M_K_Structure_Inv = new CMatrix(m_iCodeNo);
            m_M_K_Structure_Inv.m_fArrMembers = objArray.ArrTranf1Dto2D(m_M_K_Inv_fTemp1D);

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Left side of Equation System
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Load Vector - Allocate Memory (Vector Size)
            m_V_Load = new CVector(m_iCodeNo);

            // Fill Global Load Vector
            FillGlobalLoadVector();

            // Display Global Load Vector
            if (bDebugging)
            {
                Console.WriteLine("Global load vector - Dimensions: " + m_iCodeNo + " x 1 \n");
                m_V_Load.Print1DVector();
            }

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Solution - calculation of unknown displacement of nodes in GCS - system of linear equations
            // Start Solver
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Displacement Vector - Allocate Memory (Vector Size)
            m_V_Displ = new CVector(m_iCodeNo);

            // Fill Global Displacement Vector
            m_V_Displ = VectorF.fMultiplyMatrVectr(m_M_K_Structure_Inv, m_V_Load);

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // End Solver
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Display Global Displacement Vector - solution result
            if (bDebugging)
            {
                Console.WriteLine("Global displacement vector - Dimensions: " + m_iCodeNo + " x 1 \n");
                m_V_Displ.Print1DVector();
            }

            // Set displacements and rotations of DOF in GCS to appropriate node DOF acc. to global code numbers
            for (int i = 0; i < m_iCodeNo; i++)
            {
                // Check if DOF is default (free - ) or has some initial value (settlement; soil consolidation etc.)
                // See default values - float.PositiveInfinity
                if (FEMModel.m_arrFemNodes[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] == float.PositiveInfinity)
                    FEMModel.m_arrFemNodes[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] = m_V_Displ.FVectorItems[i]; // set calculated
                else // some real initial value exists
                    FEMModel.m_arrFemNodes[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] += m_V_Displ.FVectorItems[i]; // add calculated (to sum)
            }

            // Set default zero displacements or rotations in GCS to fixed DOF
            for (int i = 0; i < FEMModel.m_arrFemNodes.Length; i++)
            {
                for (int j = 0; j < FEMModel.m_arrFemNodes[i].m_VDisp.FVectorItems.Length; j++) // Check each DOF of all nodes
                {
                    if (FEMModel.m_arrFemNodes[i].m_VDisp.FVectorItems[j] == float.PositiveInfinity) // Check that default infinity value wasn't changed
                        FEMModel.m_arrFemNodes[i].m_VDisp.FVectorItems[j] = 0; // Set zero
                }
            }

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Get final end forces at element in global coordinate system GCS
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            if (bDebugging)
            {
                for (int i = 0; i < FEMModel.m_arrFemMembers.Length; i++)
                {
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_GCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + "; " + "Start Node End Forces in GCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_GCS_StNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_GCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "; " + "End Node End Forces in GCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_GCS_EnNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_LCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + "; " + "Start Node End Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_LCS_StNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_LCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "; " + "End Node End Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_LCS_EnNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemIF_LCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + "; " + "Start Node Internal Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemIF_LCS_StNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemIF_LCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "; " + "End Node Internal Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemIF_LCS_EnNode.Print1DVector();
                }
            }

            // Calculate IF in x-places

            int inum_cut = 11;
            int inum_segm = 10;
        }
コード例 #2
0
ファイル: CFEM_CALC.cs プロジェクト: 777ondro/sw-en
        /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
        // TEMPORARY EXAMPLE DATA
        // Consructor - old
        public CFEM_CALC()
        {
            // Geometry
            float fGeom_a = 4f,
                  fGeom_b = 5f,
                  fGeom_c = 3.5f;     // Unit [m]

            // Material
            CMaterial m_Mat = new CMaterial();

            // Cross-section
            CCrSc m_CrSc = new CCrSc_3_00(0, 8, 300, 125, 16.2f, 10.8f, 10.8f, 6.5f, 241.6f); // I 300 section // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            m_CrSc.FI_t = 5.69e-07f;
            m_CrSc.FI_y = 9.79e-05f;
            m_CrSc.FI_z = 4.49e-06f;
            m_CrSc.FA_g = 6.90e-03f;
            m_CrSc.FA_vy = 4.01e-03f;
            m_CrSc.FA_vz = 2.89e-03f;

            // Define Nodes Properties

            for (int i = 0; i < iNNoTot; i++)
            {
                // Create auxiliary Node object
                CFemNode CNode_i = new CFemNode(iNodeDOFNo);

                // Fill array object item with auxliary Node
                m_NodeArray[i] = CNode_i;
            }

            // Node 1
            m_NodeArray[0].ID = 1;
            m_NodeArray[0].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUX] = fGeom_a;
            m_NodeArray[0].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUY] = 0f;
            m_NodeArray[0].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUZ] = 0f;

            // Node 2
            m_NodeArray[1].ID = 2;
            m_NodeArray[1].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUX] = 0f;
            m_NodeArray[1].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUY] = 0f;
            m_NodeArray[1].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUZ] = 0f;

            // Node 3
            m_NodeArray[2].ID = 5;
            m_NodeArray[2].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUX] = fGeom_a;
            m_NodeArray[2].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUY] = 0f;
            m_NodeArray[2].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUZ] = -fGeom_c;

            // Node 4
            m_NodeArray[3].ID = 3;
            m_NodeArray[3].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUX] = fGeom_a;
            m_NodeArray[3].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUY] = -fGeom_b;
            m_NodeArray[3].m_fVNodeCoordinates.FVectorItems[(int) e3D_DOF.eUZ] = 0f;

            // Set Nodal Supports (for restraint set 0f)
            // Node 1

            // Node 2
            m_NodeArray[1].m_VDisp.FVectorItems[0] = 0f;
            m_NodeArray[1].m_VDisp.FVectorItems[1] = 0f;
            m_NodeArray[1].m_VDisp.FVectorItems[2] = 0f;
            m_NodeArray[1].m_VDisp.FVectorItems[3] = 0f;
            m_NodeArray[1].m_VDisp.FVectorItems[4] = 0f;
            m_NodeArray[1].m_VDisp.FVectorItems[5] = 0f;

            // Node 3
            m_NodeArray[2].m_VDisp.FVectorItems[0] = 0f;
            m_NodeArray[2].m_VDisp.FVectorItems[1] = 0f;
            m_NodeArray[2].m_VDisp.FVectorItems[2] = 0f;
            m_NodeArray[2].m_VDisp.FVectorItems[3] = 0f;
            m_NodeArray[2].m_VDisp.FVectorItems[4] = 0f;
            m_NodeArray[2].m_VDisp.FVectorItems[5] = 0f;

            // Node 4
            m_NodeArray[3].m_VDisp.FVectorItems[0] = 0f;
            m_NodeArray[3].m_VDisp.FVectorItems[1] = 0f;
            m_NodeArray[3].m_VDisp.FVectorItems[2] = 0f;
            m_NodeArray[3].m_VDisp.FVectorItems[3] = 0f;
            m_NodeArray[3].m_VDisp.FVectorItems[4] = 0f;
            m_NodeArray[3].m_VDisp.FVectorItems[5] = 0f;

            // Set Global Code Numbers

            int m_iCodeNo = 0; // Number of unrestrained degrees of freedom - finally gives size of structure global matrix

            foreach (CFemNode i_CNode in m_NodeArray) // Each Node
            {
                for (int i = 0; i < iNodeDOFNo; i++)     // Each DOF
                {
                    if (i_CNode.m_VDisp.FVectorItems[i] != 0)  // Perform for not restrained DOF
                    {
                        i_CNode.m_ArrNCodeNo[i] = m_iCodeNo; // Set global code number of degree of freedom (DOF)

                        m_iCodeNo++;
                    }
                }
            }

            // Fill members of structure global vector of displacement
            // Now we know number of not restrained DOF, so we can allocate array size
            m_fDisp_Vector_CN = new int[m_iCodeNo,3]; // 1st - global DOF code number, 2nd - Node index, 3rd - local code number of DOF in NODE

            FillGlobalDisplCodeNoOld();

            ////////////////////////////////////////////////////////////////////////////////////
            // Set Nodal Loads (acting directly in nodes)

            ////////////////////////////////////////////////////////////////////////////////////
            // !!!!!! No kind of these loads actually

            ///////////////////////////////////////////////////////////////////////////////////////
            // Define FEM 1D elements
            ///////////////////////////////////////////////////////////////////////////////////////

            for (int i = 0; i < iElemNoTot; i++)
            {
                // Create auxiliary Element object
                CE_1D CElement_i = new CE_1D();
                // Fill array object item
                m_ELemArray[i] = CElement_i;

                // Create auxiliary Element Load Object
                CLoad CLoad_i = new CLoad();
                // Fill array object item
                m_ELoadArray[i] = CLoad_i;
            }

            // Member 1 [0] Nodes 1 - 2 ([0] [1])
            m_ELemArray[0].NodeStart = m_NodeArray[0];
            m_ELemArray[0].NodeEnd = m_NodeArray[1];
            // Element  Type
            m_ELemArray[0].m_eSuppType3D = EElemSuppType3D.e3DEl_000000_000000;
            // Element Material
            m_ELemArray[0].m_Mat = m_Mat;
            // Element Corss-section
            m_ELemArray[0].m_CrSc = m_CrSc;
            // Fill Basic Element Data
            m_ELemArray[0].FillBasic2();
            // Load of Element only due to Element Transversal Forces
            m_ELoadArray[0].GetEndLoad_g(m_ELemArray[0], m_fq);
            // Output
            // kij_0 - local stiffeness matrix       6 x  6
            m_ELemArray[0].m_fkLocMatr.Print2DMatrixFormated();
            // A  Tranformation Rotation Matrixes    6 x  6
            m_ELemArray[0].m_fATRMatr3D.Print2DMatrixFormated();
            // B  Transfer Matrixes                  6 x  6
            m_ELemArray[0].m_fBTTMatr3D.Print2DMatrixFormated();
            // Kij - global matrix of member        12 x 12
            m_ELemArray[0].m_fKGlobM.Print2DMatrixFormated();
            // Element Load Vector                   2 x  6
            m_ELemArray[0].m_ArrElemPEF_LCS.Print2DMatrixFormated();

            #region MATRIX TEST
            /////////////////////////////////////////////////////////////////////////////////////////////////////
            // TEST
            /*
            float[,] farrk11 = new float[6, 6];
            float[,] farrk12 = new float[6, 6];
            float[,] farrk21 = new float[6, 6];
            float[,] farrk22 = new float[6, 6];

            // Fill array
            for (int i = 0; i < 6; i++)
            {
               for (int j = 0; j < 6; j++)
                {
                    farrk11[i, j] = ((i+1)*10)+1 + j;
                }
            }

            for (int i = 0; i < 6; i++)
            {
                for (int j = 0; j < 6; j++)
                {
                    farrk12[i, j] = ((i + 1) * 10) + 1 + j;
                }
            }

            for (int i = 0; i < 6; i++)
            {
                for (int j = 0; j < 6; j++)
                {
                    farrk21[i, j] = ((i + 1) * 10) + 1 + j;
                }
            }

            for (int i = 0; i < 6; i++)
            {
                for (int j = 0; j < 6; j++)
                {
                    farrk22[i, j] = ((i + 1) * 10) + 1 + j;
                }
            }

            float[,][,] farrK = new float[2, 2][,]
                    {{farrk11, farrk12},
                    {farrk21, farrk22}};

            Console.WriteLine(m_ELemArray[0].CM.Print2DMatrix(farrK, 2, 6));
            */
            //////////////////////////////////////////////////////////////////////////////////////////////////////////////
            #endregion

            // Member 2 [1] Nodes 1 - 3 ([0] [2])
            m_ELemArray[1].NodeStart = m_NodeArray[0];
            m_ELemArray[1].NodeEnd = m_NodeArray[2];
            // Element  Type
            m_ELemArray[1].m_eSuppType3D = EElemSuppType3D.e3DEl_000000_000000;
            // Element Material
            m_ELemArray[1].m_Mat = m_Mat;
            // Element Corss-section
            m_ELemArray[1].m_CrSc = m_CrSc;
            // Fill Basic Element Data
            m_ELemArray[1].FillBasic2();
            // Load of Element only due to Element Transversal Forces
            m_ELoadArray[1].GetEndLoad_F(m_ELemArray[1], 0f, 0f, m_fF);
            // Output
            // kij_0 - local stiffeness matrix       6 x  6
               m_ELemArray[1].m_fkLocMatr.Print2DMatrixFormated();
            // A  Tranformation Rotation Matrixes    6 x  6
            m_ELemArray[1].m_fATRMatr3D.Print2DMatrixFormated();
            // B  Transfer Matrixes                  6 x  6
            m_ELemArray[1].m_fBTTMatr3D.Print2DMatrixFormated();
            // Kij - global matrix of member        12 x 12
            m_ELemArray[1].m_fKGlobM.Print2DMatrixFormated();
            // Element Load Vector                   2 x  6
            m_ELemArray[1].m_ArrElemPEF_LCS.Print2DMatrixFormated();

            // Member 3 [2] Nodes 1 - 4 ([0] [3])
            m_ELemArray[2].NodeStart = m_NodeArray[0];
            m_ELemArray[2].NodeEnd = m_NodeArray[3];
            // Element  Type
            m_ELemArray[2].m_eSuppType3D = EElemSuppType3D.e3DEl_000000_000___;
            // Element Material
            m_ELemArray[2].m_Mat = m_Mat;
            // Element Corss-section
            m_ELemArray[2].m_CrSc = m_CrSc;
            // Fill Basic Element Data
            m_ELemArray[2].FillBasic2();
            // Load of Element only due to Element Transversal Forces
            m_ELoadArray[2].GetEndLoad_M(m_ELemArray[2], m_fM, 0f, 0f);
            // Output
            // kij_0 - local stiffeness matrix       6 x  6
            m_ELemArray[2].m_fkLocMatr.Print2DMatrixFormated();
            // A  Tranformation Rotation Matrixes    6 x  6
            m_ELemArray[2].m_fATRMatr3D.Print2DMatrixFormated();
            // B  Transfer Matrixes                  6 x  6
            m_ELemArray[2].m_fBTTMatr3D.Print2DMatrixFormated();
            // Kij - global matrix of member        12 x 12
            m_ELemArray[2].m_fKGlobM.Print2DMatrixFormated();
            // Element Load Vector                   2 x  6
            m_ELemArray[2].m_ArrElemPEF_LCS.Print2DMatrixFormated();

            /*
            // Nodal loads (sum nodal loads and nodal loads due to element loads)
            m_NodeArray[2].m_sLoad.s_fFZ += -55000; // Add local nodal load to element ends loads due to intermediate load
            */

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Set Global Code Number of Nodes / Nastavit globalne kodove cisla uzlov
            // Save indexes of nodes and DOF which are free and represent vector of uknown variables in solution
            // Save it as array of arrays n x 2 (1st value is index - node index (0 - n-1) , 2nd value is DOF index (0-5)
            // n - total number of nodes in model
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            SetNodesGlobCodeNoOld(); // Nastavi DOF v uzlov globalne kodove cisla ???

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Right side of Equation System
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Stiffeness Matrix of Structure - Allocate Memory (Matrix Size)
            m_M_K_Structure = new CMatrix(m_iCodeNo);

            // Fill Global Stiffeness Matrix
            FillGlobalMatrixOld();

            // Global Stiffeness Matrix    m_iCodeNo x  m_iCodeNo
            m_M_K_Structure.Print2DMatrix();

            // Auxialiary temporary transformation from 2D to 1D array / from float do double
            // Pomocne prevody medzi jednorozmernym, dvojroymernym polom a triedom Matrix,
            // bude nutne zladit a format v akom budeme pracovat s datami a potom zmazat

            CArray objArray = new CArray();
            // Convert Size
            float[] m_M_K_fTemp1D = objArray.ArrTranf2Dto1D(m_M_K_Structure.m_fArrMembers);
            // Convert Type
            double[] m_M_K_dTemp1D = objArray.ArrConverFloatToDouble1D(m_M_K_fTemp1D);

            MatrixF64 objMatrix = new MatrixF64(6, 6, m_M_K_dTemp1D);
            // Print Created Matrix of MatrixF64 Class
            objMatrix.WriteLine();
            // Get Inverse Global Stiffeness Matrix
            MatrixF64 objMatrixInv =  objMatrix.Inverse();
            // Print Inverse Matrix
            objMatrixInv.WriteLine();
            // Convert Type
            float[] m_M_K_Inv_fTemp1D = objArray.ArrConverMatrixF64ToFloat1D(objMatrixInv);
            // Inverse Global Stiffeness Matrix of Structure - Allocate Memory (Matrix Size)
            CMatrix m_M_K_Structure_Inv = new CMatrix(m_iCodeNo);
            m_M_K_Structure_Inv.m_fArrMembers = objArray.ArrTranf1Dto2D(m_M_K_Inv_fTemp1D);

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Left side of Equation System
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Load Vector - Allocate Memory (Vector Size)
            m_V_Load = new CVector(m_iCodeNo);

            // Fill Global Load Vector
            FillGlobalLoadVectorOld();

            // Display Global Load Vector
            m_V_Load.Print1DVector();

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Solution - calculation of unknown displacement of nodes in GCS - system of linear equations
            // Start Solver
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Displacement Vector - Allocate Memory (Vector Size)
            m_V_Displ = new CVector(m_iCodeNo);

            // Fill Global Displacement Vector
            m_V_Displ = VectorF.fMultiplyMatrVectr(m_M_K_Structure_Inv, m_V_Load);

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // End Solver
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Display Global Displacemnt Vector - solution result
            //Console.ForegroundColor = ConsoleColor.Cyan;
            m_V_Displ.Print1DVector();
            //Console.ForegroundColor = ConsoleColor.Green;
            //Console.BackgroundColor = ConsoleColor.White;

            // Set displacements and rotations of DOF in GCS to appropriate node DOF acc. to global code numbers
            for (int i = 0; i < m_iCodeNo; i++)
            {
                // Check if DOF is default (free - ) or has some initial value (settlement; soil consolidation etc.)
                // See Fill_NDisp_InitStr() for default values - float.PositiveInfinity
                if (m_NodeArray[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] == float.PositiveInfinity)
                    m_NodeArray[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] = m_V_Displ.FVectorItems[i]; // set calculated
                else // some real initial value exists
                    m_NodeArray[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] += m_V_Displ.FVectorItems[i]; // add calculated (to sum)
            }

                /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
                // Get final end forces at element in global coordinate system GCS
                /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

                for (int i = 0; i < iElemNoTot; i++)
                {
                    m_ELemArray[i].GetArrElemEF_GCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + m_ELemArray[i].NodeStart.ID + "; " + "Start Node End Forces in GCS");
                    m_ELemArray[i].m_VElemEF_GCS_StNode.Print1DVector();
                    m_ELemArray[i].GetArrElemEF_GCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + m_ELemArray[i].NodeEnd.ID + "; " + "End Node End Forces in GCS");
                    m_ELemArray[i].m_VElemEF_GCS_EnNode.Print1DVector();
                    m_ELemArray[i].GetArrElemEF_LCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + m_ELemArray[i].NodeStart.ID + "; " + "Start Node End Forces in LCS");
                    m_ELemArray[i].m_VElemEF_LCS_StNode.Print1DVector();
                    m_ELemArray[i].GetArrElemEF_LCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + m_ELemArray[i].NodeEnd.ID + "; " + "End Node End Forces in LCS");
                    m_ELemArray[i].m_VElemEF_LCS_EnNode.Print1DVector();
                    m_ELemArray[i].GetArrElemIF_LCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + m_ELemArray[i].NodeStart.ID + "; " + "Start Node Internal Forces in LCS");
                    m_ELemArray[i].m_VElemIF_LCS_StNode.Print1DVector();
                    m_ELemArray[i].GetArrElemIF_LCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + m_ELemArray[i].NodeEnd.ID + "; " + "End Node Internal Forces in LCS");
                    m_ELemArray[i].m_VElemIF_LCS_EnNode.Print1DVector();
                }
        }