private static bool HasSharedTarget(NodeBlock pred, DJumpCondition jcc) { NodeBlock trueTarget = BlockAnalysis.EffectiveTarget(jcc.trueTarget); if (trueTarget.lir.numPredecessors == 1) { return(false); } if (pred.lir.idominated.Length > 3) { return(true); } // Hack... sniff out the case we care about, the true target // probably having a conditional. if (trueTarget.lir.instructions.Length == 2 && trueTarget.lir.instructions[0].op == Opcode.Constant && trueTarget.lir.instructions[1].op == Opcode.Jump) { return(true); } // Because of edge splitting, there will always be at least 4 // dominators for the immediate dominator of a shared block. return(false); }
private void writeDoWhileLoop(WhileLoop loop) { outputLine("do" + Environment.NewLine + "{"); increaseIndent(); if (loop.body != null) { writeBlock(loop.body); } string cond; if (loop.logic == null) { writeStatements(loop.source); decreaseIndent(); DJumpCondition jcc = (DJumpCondition)loop.source.nodes.last; cond = buildExpression(jcc.getOperand(0)); } else { decreaseIndent(); cond = buildLogicChain(loop.logic); } outputLine("}"); outputLine("while (" + cond + ");"); if (loop.join != null) { writeBlock(loop.join); } }
public override void visit(DJumpCondition jcc) { if (jcc.getOperand(0).type == NodeType.Binary) { DBinary binary = (DBinary)jcc.getOperand(0); propagateInputs(binary.lhs, binary.rhs); } }
private void writeIf(IfBlock block) { string cond; if (block.logic == null) { writeStatements(block.source); DJumpCondition jcc = (DJumpCondition)block.source.nodes.last; if (block.invert) { if (jcc.getOperand(0).type == NodeType.Unary && ((DUnary)jcc.getOperand(0)).spop == SPOpcode.not) { cond = buildExpression(jcc.getOperand(0).getOperand(0)); } else if (jcc.getOperand(0).type == NodeType.Load) { cond = "!" + buildExpression(jcc.getOperand(0)); } else { cond = "!(" + buildExpression(jcc.getOperand(0)) + ")"; } } else { cond = buildExpression(jcc.getOperand(0)); } } else { cond = buildLogicChain(block.logic); Debug.Assert(!block.invert); } outputLine("if (" + cond + ")"); outputLine("{"); increaseIndent(); writeBlock(block.trueArm); decreaseIndent(); if (block.falseArm != null && BlockAnalysis.GetEmptyTarget(block.falseArm.source) == null) { outputLine("}"); outputLine("else"); outputLine("{"); increaseIndent(); writeBlock(block.falseArm); decreaseIndent(); } outputLine("}"); if (block.join != null) { writeBlock(block.join); } }
private IfBlock traverseIf(NodeBlock block, DJumpCondition jcc) { if (HasSharedTarget(block, jcc)) { return(traverseComplexIf(block, jcc)); } NodeBlock trueTarget = (jcc.spop == SPOpcode.jzer) ? jcc.falseTarget : jcc.trueTarget; NodeBlock falseTarget = (jcc.spop == SPOpcode.jzer) ? jcc.trueTarget : jcc.falseTarget; NodeBlock joinTarget = findJoinOfSimpleIf(block, jcc); // If there is no join block (both arms terminate control flow), // eliminate one arm and use the other as a join point. if (joinTarget == null) { joinTarget = falseTarget; } // If the false target is equivalent to the join point, eliminate // it. if (BlockAnalysis.EffectiveTarget(falseTarget) == joinTarget) { falseTarget = null; } // If the true target is equivalent to the join point, promote // the false target to the true target and undo the inversion. bool invert = false; if (BlockAnalysis.EffectiveTarget(trueTarget) == joinTarget) { trueTarget = falseTarget; falseTarget = null; invert ^= true; } // If there is always a true target and a join target. pushScope(joinTarget); ControlBlock trueArm = traverseBlock(trueTarget); popScope(); ControlBlock joinArm = traverseJoin(joinTarget); if (falseTarget == null) { return(new IfBlock(block, invert, trueArm, joinArm)); } pushScope(joinTarget); ControlBlock falseArm = traverseBlock(falseTarget); popScope(); return(new IfBlock(block, invert, trueArm, falseArm, joinArm)); }
private ControlBlock traverseLoop(NodeBlock block) { DNode last = block.nodes.last; NodeBlock effectiveHeader = block; LogicChain chain = null; if (last.type == NodeType.JumpCondition) { DJumpCondition jcc = (DJumpCondition)last; if (HasSharedTarget(block, jcc)) { chain = buildLogicChain(block, null, out effectiveHeader); } } last = effectiveHeader.nodes.last; //Debug.Assert(last.type == NodeType.JumpCondition); if (last.type == NodeType.JumpCondition) { // Assert that the backedge is a straight jump. //Debug.Assert(BlockAnalysis.GetSingleTarget(graph_[block.lir.backedge.id]) == block); NodeBlock join, body, cond; ControlType type = findLoopJoinAndBody(block, effectiveHeader, out join, out body, out cond); ControlBlock joinArm = traverseBlock(join); ControlBlock bodyArm = null; if (body != null) { pushScope(block); pushScope(cond); bodyArm = traverseBlockNoLoop(body); popScope(); popScope(); } if (chain != null) { return(new WhileLoop(type, chain, bodyArm, joinArm)); } return(new WhileLoop(type, cond, bodyArm, joinArm)); } return(null); }
private NodeBlock findJoinOfSimpleIf(NodeBlock block, DJumpCondition jcc) { //Debug.Assert(block.nodes.last == jcc); //Debug.Assert(block.lir.idominated[0] == jcc.falseTarget.lir || block.lir.idominated[0] == jcc.trueTarget.lir); //Debug.Assert(block.lir.idominated[1] == jcc.falseTarget.lir || block.lir.idominated[1] == jcc.trueTarget.lir); if (block.lir.idominated.Length == 2) { if (jcc.trueTarget != BlockAnalysis.EffectiveTarget(jcc.trueTarget)) { return(jcc.trueTarget); } if (jcc.falseTarget != BlockAnalysis.EffectiveTarget(jcc.falseTarget)) { return(jcc.falseTarget); } return(null); } return(graph_[block.lir.idominated[2].id]); }
private static LogicOperator ToLogicOp(DJumpCondition jcc) { NodeBlock trueTarget = BlockAnalysis.EffectiveTarget(jcc.trueTarget); bool targetIsTruthy = false; if (trueTarget.lir.instructions[0] is LConstant) { LConstant constant = (LConstant)trueTarget.lir.instructions[0]; targetIsTruthy = (constant.val == 1); } // jump on true -> 1 == || // jump on false -> 0 == && // other combinations are nonsense, so assert. ////Debug.Assert((jcc.spop == SPOpcode.jnz && targetIsTruthy) || // (jcc.spop == SPOpcode.jzer && !targetIsTruthy)); LogicOperator logicop = (jcc.spop == SPOpcode.jnz && targetIsTruthy) ? LogicOperator.Or : LogicOperator.And; return(logicop); }
public override void visit(DJumpCondition jcc) { jcc.typeSet.addType(new TypeUnit(new PawnType(CellType.Bool))); }
private IfBlock traverseIf(NodeBlock block, DJumpCondition jcc) { if (HasSharedTarget(block, jcc)) return traverseComplexIf(block, jcc); NodeBlock trueTarget = (jcc.spop == SPOpcode.jzer) ? jcc.falseTarget : jcc.trueTarget; NodeBlock falseTarget = (jcc.spop == SPOpcode.jzer) ? jcc.trueTarget : jcc.falseTarget; NodeBlock joinTarget = findJoinOfSimpleIf(block, jcc); // If there is no join block (both arms terminate control flow), // eliminate one arm and use the other as a join point. if (joinTarget == null) joinTarget = falseTarget; // If the false target is equivalent to the join point, eliminate // it. if (BlockAnalysis.EffectiveTarget(falseTarget) == joinTarget) falseTarget = null; // If the true target is equivalent to the join point, promote // the false target to the true target and undo the inversion. bool invert = false; if (BlockAnalysis.EffectiveTarget(trueTarget) == joinTarget) { trueTarget = falseTarget; falseTarget = null; invert ^= true; } // If there is always a true target and a join target. pushScope(joinTarget); ControlBlock trueArm = traverseBlock(trueTarget); popScope(); ControlBlock joinArm = traverseJoin(joinTarget); if (falseTarget == null) return new IfBlock(block, invert, trueArm, joinArm); pushScope(joinTarget); ControlBlock falseArm = traverseBlock(falseTarget); popScope(); return new IfBlock(block, invert, trueArm, falseArm, joinArm); }
private IfBlock traverseComplexIf(NodeBlock block, DJumpCondition jcc) { // Degenerate case: using || or &&, or any combination thereof, // will generate a chain of n+1 conditional blocks, where each // |n| has a target to a shared "success" block, setting a // phony variable. We decompose this giant mess into the intended // sequence of expressions. NodeBlock join; LogicChain chain = buildLogicChain(block, null, out join); DJumpCondition finalJcc = (DJumpCondition)join.nodes.last; //Debug.Assert(finalJcc.spop == SPOpcode.jzer); // The final conditional should have the normal dominator // properties: 2 or 3 idoms, depending on the number of arms. // Because of critical edge splitting, we may have 3 idoms // even if there are only actually two arms. NodeBlock joinBlock = findJoinOfSimpleIf(join, finalJcc); // If an AND chain reaches its end, the result is 1. jzer tests // for zero, so this is effectively testing (!success). // If an OR expression reaches its end, the result is 0. jzer // tests for zero, so this is effectively testing if (failure). // // In both cases, the true target represents a failure, so flip // the targets around. NodeBlock trueBlock = finalJcc.falseTarget; NodeBlock falseBlock = finalJcc.trueTarget; // If there is no join block, both arms terminate control flow, // eliminate one arm and use the other as a join point. if (joinBlock == null) joinBlock = falseBlock; if (join.lir.idominated.Length == 2 || BlockAnalysis.EffectiveTarget(falseBlock) == joinBlock) { if (join.lir.idominated.Length == 3) joinBlock = BlockAnalysis.EffectiveTarget(falseBlock); // One-armed structure. pushScope(joinBlock); ControlBlock trueArm1 = traverseBlock(trueBlock); popScope(); ControlBlock joinArm1 = traverseBlock(joinBlock); return new IfBlock(block, chain, trueArm1, joinArm1); } //Debug.Assert(join.lir.idominated.Length == 3); pushScope(joinBlock); ControlBlock trueArm2 = traverseBlock(trueBlock); ControlBlock falseArm = traverseBlock(falseBlock); popScope(); ControlBlock joinArm2 = traverseBlock(joinBlock); return new IfBlock(block, chain, trueArm2, falseArm, joinArm2); }
private NodeBlock findJoinOfSimpleIf(NodeBlock block, DJumpCondition jcc) { //Debug.Assert(block.nodes.last == jcc); //Debug.Assert(block.lir.idominated[0] == jcc.falseTarget.lir || block.lir.idominated[0] == jcc.trueTarget.lir); //Debug.Assert(block.lir.idominated[1] == jcc.falseTarget.lir || block.lir.idominated[1] == jcc.trueTarget.lir); if (block.lir.idominated.Length == 2) { if (jcc.trueTarget != BlockAnalysis.EffectiveTarget(jcc.trueTarget)) return jcc.trueTarget; if (jcc.falseTarget != BlockAnalysis.EffectiveTarget(jcc.falseTarget)) return jcc.falseTarget; return null; } return graph_[block.lir.idominated[2].id]; }
private static LogicOperator ToLogicOp(DJumpCondition jcc) { NodeBlock trueTarget = BlockAnalysis.EffectiveTarget(jcc.trueTarget); bool targetIsTruthy = false; if (trueTarget.lir.instructions[0] is LConstant) { LConstant constant = (LConstant)trueTarget.lir.instructions[0]; targetIsTruthy = (constant.val == 1); } // jump on true -> 1 == || // jump on false -> 0 == && // other combinations are nonsense, so assert. ////Debug.Assert((jcc.spop == SPOpcode.jnz && targetIsTruthy) || // (jcc.spop == SPOpcode.jzer && !targetIsTruthy)); LogicOperator logicop = (jcc.spop == SPOpcode.jnz && targetIsTruthy) ? LogicOperator.Or : LogicOperator.And; return logicop; }
private static bool HasSharedTarget(NodeBlock pred, DJumpCondition jcc) { NodeBlock trueTarget = BlockAnalysis.EffectiveTarget(jcc.trueTarget); if (trueTarget.lir.numPredecessors == 1) return false; if (pred.lir.idominated.Length > 3) return true; // Hack... sniff out the case we care about, the true target // probably having a conditional. if (trueTarget.lir.instructions.Length == 2 && trueTarget.lir.instructions[0].op == Opcode.Constant && trueTarget.lir.instructions[1].op == Opcode.Jump) { return true; } // Because of edge splitting, there will always be at least 4 // dominators for the immediate dominator of a shared block. return false; }
public override void visit(DJumpCondition jcc) { }
public virtual void visit(DJumpCondition jcc) { }
public void traverse(NodeBlock block) { for (int i = 0; i < block.lir.numPredecessors; i++) { NodeBlock pred = blocks_[block.lir.getPredecessor(i).id]; // Don't bother with backedges yet. if (pred.lir.id >= block.lir.id) continue; block.inherit(graph_, pred); } foreach (LInstruction uins in block.lir.instructions) { // Attempt to find static declarations. This is really // expensive - we could cheapen it by creating per-method // lists of statics. { int i = -1; do { Variable var = file_.lookupDeclarations(uins.pc, ref i, Scope.Static); if (var == null) break; block.add(new DDeclareStatic(var)); } while (true); } switch (uins.op) { case Opcode.DebugBreak: break; case Opcode.Stack: { LStack ins = (LStack)uins; if (ins.amount < 0) { for (int i = 0; i < -ins.amount / 4; i++) { DDeclareLocal local = new DDeclareLocal(ins.pc, null); block.stack.push(local); block.add(local); } } else { for (int i = 0; i < ins.amount / 4; i++) block.stack.pop(); } break; } case Opcode.Fill: { LFill ins = (LFill)uins; DNode node = block.stack.alt; DDeclareLocal local = (DDeclareLocal)node; //Debug.Assert(block.stack.pri.type == NodeType.Constant); for (int i = 0; i < ins.amount; i += 4) block.stack.set(local.offset + i, block.stack.pri); break; } case Opcode.Constant: { LConstant ins = (LConstant)uins; DConstant v = new DConstant(ins.val, ins.pc); block.stack.set(ins.reg, v); block.add(v); break; } case Opcode.PushConstant: { LPushConstant ins = (LPushConstant)uins; DConstant v = new DConstant(ins.val); DDeclareLocal local = new DDeclareLocal(ins.pc, v); block.stack.push(local); block.add(v); block.add(local); break; } case Opcode.PushReg: { LPushReg ins = (LPushReg)uins; DDeclareLocal local = new DDeclareLocal(ins.pc, block.stack.reg(ins.reg)); block.stack.push(local); block.add(local); break; } case Opcode.Pop: { LPop ins = (LPop)uins; DNode node = block.stack.popAsTemp(); block.stack.set(ins.reg, node); break; } case Opcode.StackAddress: { LStackAddress ins = (LStackAddress)uins; DDeclareLocal local = block.stack.getName(ins.offset); block.stack.set(ins.reg, local); break; } case Opcode.PushStackAddress: { LPushStackAddress ins = (LPushStackAddress)uins; DLocalRef lref = new DLocalRef(block.stack.getName(ins.offset)); DDeclareLocal local = new DDeclareLocal(ins.pc, lref); block.stack.push(local); block.add(lref); block.add(local); break; } case Opcode.Goto: { LGoto ins = (LGoto)uins; DJump node = new DJump(blocks_[ins.target.id]); block.add(node); break; } case Opcode.Jump: { LJump ins = (LJump)uins; DJump node = new DJump(blocks_[ins.target.id]); block.add(node); break; } case Opcode.JumpCondition: { LJumpCondition ins = (LJumpCondition)uins; NodeBlock lhtarget = blocks_[ins.trueTarget.id]; NodeBlock rhtarget = blocks_[ins.falseTarget.id]; DNode cmp = block.stack.pri; SPOpcode jmp = ins.spop; if (jmp != SPOpcode.jzer && jmp != SPOpcode.jnz) { SPOpcode newop; switch (ins.spop) { case SPOpcode.jeq: newop = SPOpcode.neq; jmp = SPOpcode.jzer; break; case SPOpcode.jneq: newop = SPOpcode.eq; jmp = SPOpcode.jzer; break; case SPOpcode.jsgeq: newop = SPOpcode.sless; jmp = SPOpcode.jzer; break; case SPOpcode.jsgrtr: newop = SPOpcode.sleq; jmp = SPOpcode.jzer; break; case SPOpcode.jsleq: newop = SPOpcode.sgrtr; jmp = SPOpcode.jzer; break; case SPOpcode.jsless: newop = SPOpcode.sgeq; jmp = SPOpcode.jzer; break; default: //Debug.Assert(false); return; } cmp = new DBinary(newop, block.stack.pri, block.stack.alt); block.add(cmp); } DJumpCondition jcc = new DJumpCondition(jmp, cmp, lhtarget, rhtarget); block.add(jcc); break; } case Opcode.LoadLocal: { LLoadLocal ins = (LLoadLocal)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); block.stack.set(ins.reg, load); block.add(load); break; } case Opcode.LoadLocalRef: { LLoadLocalRef ins = (LLoadLocalRef)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); load = new DLoad(load); block.stack.set(ins.reg, load); block.add(load); break; } case Opcode.StoreLocal: { LStoreLocal ins = (LStoreLocal)uins; DStore store = new DStore(block.stack.getName(ins.offset), block.stack.reg(ins.reg)); block.add(store); break; } case Opcode.StoreLocalRef: { LStoreLocalRef ins = (LStoreLocalRef)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); DStore store = new DStore(load, block.stack.reg(ins.reg)); block.add(store); break; } case Opcode.SysReq: { LSysReq sysreq = (LSysReq)uins; DConstant ins = (DConstant)block.stack.popValue(); List<DNode> arguments = new List<DNode>(); for (int i = 0; i < ins.value; i++) arguments.Add(block.stack.popName()); DSysReq call = new DSysReq(sysreq.native, arguments.ToArray()); block.stack.set(Register.Pri, call); block.add(call); break; } case Opcode.AddConstant: { LAddConstant ins = (LAddConstant)uins; DConstant val = new DConstant(ins.amount); DBinary node = new DBinary(SPOpcode.add, block.stack.pri, val); block.stack.set(Register.Pri, node); block.add(val); block.add(node); break; } case Opcode.MulConstant: { LMulConstant ins = (LMulConstant)uins; DConstant val = new DConstant(ins.amount); DBinary node = new DBinary(SPOpcode.smul, block.stack.pri, val); block.stack.set(Register.Pri, node); block.add(val); block.add(node); break; } case Opcode.Bounds: { LBounds ins = (LBounds)uins; DBoundsCheck node = new DBoundsCheck(block.stack.pri); block.add(node); break; } case Opcode.IndexAddress: { LIndexAddress ins = (LIndexAddress)uins; DArrayRef node = new DArrayRef(block.stack.alt, block.stack.pri, ins.shift); block.stack.set(Register.Pri, node); block.add(node); break; } case Opcode.Move: { LMove ins = (LMove)uins; if (ins.reg == Register.Pri) block.stack.set(Register.Pri, block.stack.alt); else block.stack.set(Register.Alt, block.stack.pri); break; } case Opcode.Store: { LStore ins = (LStore)uins; DStore store = new DStore(block.stack.alt, block.stack.pri); block.add(store); break; } case Opcode.Load: { LLoad ins = (LLoad)uins; DLoad load = new DLoad(block.stack.pri); block.stack.set(Register.Pri, load); block.add(load); break; } case Opcode.Swap: { LSwap ins = (LSwap)uins; DNode lhs = block.stack.popAsTemp(); DNode rhs = block.stack.reg(ins.reg); DDeclareLocal local = new DDeclareLocal(ins.pc, rhs); block.stack.set(ins.reg, lhs); block.stack.push(local); block.add(local); break; } case Opcode.IncI: { DIncDec inc = new DIncDec(block.stack.pri, 1); block.add(inc); break; } case Opcode.DecI: { DIncDec dec = new DIncDec(block.stack.pri, -1); block.add(dec); break; } case Opcode.IncLocal: { LIncLocal ins = (LIncLocal)uins; DDeclareLocal local = block.stack.getName(ins.offset); DIncDec inc = new DIncDec(local, 1); block.add(inc); break; } case Opcode.IncReg: { LIncReg ins = (LIncReg)uins; DIncDec dec = new DIncDec(block.stack.reg(ins.reg), 1); block.add(dec); break; } case Opcode.DecLocal: { LDecLocal ins = (LDecLocal)uins; DDeclareLocal local = block.stack.getName(ins.offset); DIncDec dec = new DIncDec(local, -1); block.add(dec); break; } case Opcode.DecReg: { LDecReg ins = (LDecReg)uins; DIncDec dec = new DIncDec(block.stack.reg(ins.reg), -1); block.add(dec); break; } case Opcode.Return: { DReturn node = new DReturn(block.stack.pri); block.add(node); break; } case Opcode.PushLocal: { LPushLocal ins = (LPushLocal)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); DDeclareLocal local = new DDeclareLocal(ins.pc, load); block.stack.push(local); block.add(load); block.add(local); break; } case Opcode.Exchange: { DNode node = block.stack.alt; block.stack.set(Register.Alt, block.stack.pri); block.stack.set(Register.Pri, node); break; } case Opcode.Unary: { LUnary ins = (LUnary)uins; DUnary unary = new DUnary(ins.spop, block.stack.reg(ins.reg)); block.stack.set(Register.Pri, unary); block.add(unary); break; } case Opcode.Binary: { LBinary ins = (LBinary)uins; DBinary binary = new DBinary(ins.spop, block.stack.reg(ins.lhs), block.stack.reg(ins.rhs)); block.stack.set(Register.Pri, binary); block.add(binary); break; } case Opcode.PushGlobal: { LPushGlobal ins = (LPushGlobal)uins; Variable global = file_.lookupGlobal(ins.address); if (global == null) global = file_.lookupVariable(ins.pc, ins.address, Scope.Static); DGlobal dglobal = new DGlobal(global); DNode node = new DLoad(dglobal); DDeclareLocal local = new DDeclareLocal(ins.pc, node); block.stack.push(local); block.add(dglobal); block.add(node); block.add(local); break; } case Opcode.LoadGlobal: { LLoadGlobal ins = (LLoadGlobal)uins; Variable global = file_.lookupGlobal(ins.address); if (global == null) global = file_.lookupVariable(ins.pc, ins.address, Scope.Static); DNode dglobal = new DGlobal(global); DNode node = new DLoad(dglobal); block.stack.set(ins.reg, node); block.add(dglobal); block.add(node); break; } case Opcode.StoreGlobal: { LStoreGlobal ins = (LStoreGlobal)uins; Variable global = file_.lookupGlobal(ins.address); if (global == null) global = file_.lookupVariable(ins.pc, ins.address, Scope.Static); DGlobal node = new DGlobal(global); DStore store = new DStore(node, block.stack.reg(ins.reg)); block.add(node); block.add(store); break; } case Opcode.Call: { LCall ins = (LCall)uins; Function f = file_.lookupFunction((uint)ins.address); DConstant args = (DConstant)block.stack.popValue(); List<DNode> arguments = new List<DNode>(); for (int i = 0; i < args.value; i++) arguments.Add(block.stack.popName()); DCall call = new DCall(f, arguments.ToArray()); block.stack.set(Register.Pri, call); block.add(call); break; } case Opcode.EqualConstant: { LEqualConstant ins = (LEqualConstant)uins; DConstant c = new DConstant(ins.value); DBinary node = new DBinary(SPOpcode.eq, block.stack.reg(ins.reg), c); block.stack.set(Register.Pri, node); block.add(c); block.add(node); break; } case Opcode.LoadIndex: { LLoadIndex ins = (LLoadIndex)uins; DArrayRef aref = new DArrayRef(block.stack.alt, block.stack.pri, ins.shift); DLoad load = new DLoad(aref); block.stack.set(Register.Pri, load); block.add(aref); block.add(load); break; } case Opcode.ZeroGlobal: { LZeroGlobal ins = (LZeroGlobal)uins; Variable global = file_.lookupGlobal(ins.address); DNode dglobal = new DGlobal(global); DConstant rhs = new DConstant(0); DStore lhs = new DStore(dglobal, rhs); block.add(dglobal); block.add(rhs); block.add(lhs); break; } case Opcode.IncGlobal: { LIncGlobal ins = (LIncGlobal)uins; Variable global = file_.lookupGlobal(ins.address); DNode dglobal = new DGlobal(global); DLoad load = new DLoad(dglobal); DConstant val = new DConstant(1); DBinary add = new DBinary(SPOpcode.add, load, val); DStore store = new DStore(dglobal, add); block.add(load); block.add(val); block.add(add); block.add(store); break; } case Opcode.StoreGlobalConstant: { LStoreGlobalConstant lstore = (LStoreGlobalConstant)uins; Variable var = file_.lookupGlobal(lstore.address); DConstant val = new DConstant(lstore.value); DGlobal global = new DGlobal(var); DStore store = new DStore(global, val); block.add(val); block.add(global); block.add(store); break; } case Opcode.StoreLocalConstant: { LStoreLocalConstant lstore = (LStoreLocalConstant)uins; DDeclareLocal var = block.stack.getName(lstore.address); DConstant val = new DConstant(lstore.value); DStore store = new DStore(var, val); block.add(val); block.add(store); break; } case Opcode.ZeroLocal: { LZeroLocal lstore = (LZeroLocal)uins; DDeclareLocal var = block.stack.getName(lstore.address); DConstant val = new DConstant(0); DStore store = new DStore(var, val); block.add(val); block.add(store); break; } case Opcode.Heap: { LHeap ins = (LHeap)uins; DHeap heap = new DHeap(ins.amount); block.add(heap); block.stack.set(Register.Alt, heap); break; } case Opcode.MemCopy: { LMemCopy ins = (LMemCopy)uins; DMemCopy copy = new DMemCopy(block.stack.alt, block.stack.pri, ins.bytes); block.add(copy); break; } case Opcode.Switch: { LSwitch ins = (LSwitch)uins; DSwitch switch_ = new DSwitch(block.stack.pri, ins); block.add(switch_); break; } default: throw new Exception("unhandled opcode"); } } for (int i = 0; i < block.lir.idominated.Length; i++) { LBlock lir = block.lir.idominated[i]; traverse(blocks_[lir.id]); } }
public void traverse(NodeBlock block) { for (int i = 0; i < block.lir.numPredecessors; i++) { NodeBlock pred = blocks_[block.lir.getPredecessor(i).id]; // Don't bother with backedges yet. if (pred.lir.id >= block.lir.id) { continue; } block.inherit(graph_, pred); } foreach (LInstruction uins in block.lir.instructions) { // Attempt to find static declarations. This is really // expensive - we could cheapen it by creating per-method // lists of statics. { int i = -1; do { Variable var = file_.lookupDeclarations(uins.pc, ref i, Scope.Static); if (var == null) { break; } block.add(new DDeclareStatic(var)); } while (true); } switch (uins.op) { case Opcode.DebugBreak: break; case Opcode.Stack: { LStack ins = (LStack)uins; if (ins.amount < 0) { for (int i = 0; i < -ins.amount / 4; i++) { DDeclareLocal local = new DDeclareLocal(ins.pc, null); block.stack.push(local); block.add(local); } } else { for (int i = 0; i < ins.amount / 4; i++) { block.stack.pop(); } } break; } case Opcode.Fill: { LFill ins = (LFill)uins; DNode node = block.stack.alt; DDeclareLocal local = (DDeclareLocal)node; //Debug.Assert(block.stack.pri.type == NodeType.Constant); for (int i = 0; i < ins.amount; i += 4) { block.stack.set(local.offset + i, block.stack.pri); } break; } case Opcode.Constant: { LConstant ins = (LConstant)uins; DConstant v = new DConstant(ins.val, ins.pc); block.stack.set(ins.reg, v); block.add(v); break; } case Opcode.PushConstant: { LPushConstant ins = (LPushConstant)uins; DConstant v = new DConstant(ins.val); DDeclareLocal local = new DDeclareLocal(ins.pc, v); block.stack.push(local); block.add(v); block.add(local); break; } case Opcode.PushReg: { LPushReg ins = (LPushReg)uins; DDeclareLocal local = new DDeclareLocal(ins.pc, block.stack.reg(ins.reg)); block.stack.push(local); block.add(local); break; } case Opcode.Pop: { LPop ins = (LPop)uins; DNode node = block.stack.popAsTemp(); block.stack.set(ins.reg, node); break; } case Opcode.StackAddress: { LStackAddress ins = (LStackAddress)uins; DDeclareLocal local = block.stack.getName(ins.offset); block.stack.set(ins.reg, local); break; } case Opcode.PushStackAddress: { LPushStackAddress ins = (LPushStackAddress)uins; DLocalRef lref = new DLocalRef(block.stack.getName(ins.offset)); DDeclareLocal local = new DDeclareLocal(ins.pc, lref); block.stack.push(local); block.add(lref); block.add(local); break; } case Opcode.Goto: { LGoto ins = (LGoto)uins; DJump node = new DJump(blocks_[ins.target.id]); block.add(node); break; } case Opcode.Jump: { LJump ins = (LJump)uins; DJump node = new DJump(blocks_[ins.target.id]); block.add(node); break; } case Opcode.JumpCondition: { LJumpCondition ins = (LJumpCondition)uins; NodeBlock lhtarget = blocks_[ins.trueTarget.id]; NodeBlock rhtarget = blocks_[ins.falseTarget.id]; DNode cmp = block.stack.pri; SPOpcode jmp = ins.spop; if (jmp != SPOpcode.jzer && jmp != SPOpcode.jnz) { SPOpcode newop; switch (ins.spop) { case SPOpcode.jeq: newop = SPOpcode.neq; jmp = SPOpcode.jzer; break; case SPOpcode.jneq: newop = SPOpcode.eq; jmp = SPOpcode.jzer; break; case SPOpcode.jsgeq: newop = SPOpcode.sless; jmp = SPOpcode.jzer; break; case SPOpcode.jsgrtr: newop = SPOpcode.sleq; jmp = SPOpcode.jzer; break; case SPOpcode.jsleq: newop = SPOpcode.sgrtr; jmp = SPOpcode.jzer; break; case SPOpcode.jsless: newop = SPOpcode.sgeq; jmp = SPOpcode.jzer; break; default: //Debug.Assert(false); return; } cmp = new DBinary(newop, block.stack.pri, block.stack.alt); block.add(cmp); } DJumpCondition jcc = new DJumpCondition(jmp, cmp, lhtarget, rhtarget); block.add(jcc); break; } case Opcode.LoadLocal: { LLoadLocal ins = (LLoadLocal)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); block.stack.set(ins.reg, load); block.add(load); break; } case Opcode.LoadLocalRef: { LLoadLocalRef ins = (LLoadLocalRef)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); load = new DLoad(load); block.stack.set(ins.reg, load); block.add(load); break; } case Opcode.StoreLocal: { LStoreLocal ins = (LStoreLocal)uins; DStore store = new DStore(block.stack.getName(ins.offset), block.stack.reg(ins.reg)); block.add(store); break; } case Opcode.StoreLocalRef: { LStoreLocalRef ins = (LStoreLocalRef)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); DStore store = new DStore(load, block.stack.reg(ins.reg)); block.add(store); break; } case Opcode.SysReq: { LSysReq sysreq = (LSysReq)uins; DConstant ins = (DConstant)block.stack.popValue(); List <DNode> arguments = new List <DNode>(); for (int i = 0; i < ins.value; i++) { arguments.Add(block.stack.popName()); } DSysReq call = new DSysReq(sysreq.native, arguments.ToArray()); block.stack.set(Register.Pri, call); block.add(call); break; } case Opcode.AddConstant: { LAddConstant ins = (LAddConstant)uins; DConstant val = new DConstant(ins.amount); DBinary node = new DBinary(SPOpcode.add, block.stack.pri, val); block.stack.set(Register.Pri, node); block.add(val); block.add(node); break; } case Opcode.MulConstant: { LMulConstant ins = (LMulConstant)uins; DConstant val = new DConstant(ins.amount); DBinary node = new DBinary(SPOpcode.smul, block.stack.pri, val); block.stack.set(Register.Pri, node); block.add(val); block.add(node); break; } case Opcode.Bounds: { LBounds ins = (LBounds)uins; DBoundsCheck node = new DBoundsCheck(block.stack.pri); block.add(node); break; } case Opcode.IndexAddress: { LIndexAddress ins = (LIndexAddress)uins; DArrayRef node = new DArrayRef(block.stack.alt, block.stack.pri, ins.shift); block.stack.set(Register.Pri, node); block.add(node); break; } case Opcode.Move: { LMove ins = (LMove)uins; if (ins.reg == Register.Pri) { block.stack.set(Register.Pri, block.stack.alt); } else { block.stack.set(Register.Alt, block.stack.pri); } break; } case Opcode.Store: { LStore ins = (LStore)uins; DStore store = new DStore(block.stack.alt, block.stack.pri); block.add(store); break; } case Opcode.Load: { LLoad ins = (LLoad)uins; DLoad load = new DLoad(block.stack.pri); block.stack.set(Register.Pri, load); block.add(load); break; } case Opcode.Swap: { LSwap ins = (LSwap)uins; DNode lhs = block.stack.popAsTemp(); DNode rhs = block.stack.reg(ins.reg); DDeclareLocal local = new DDeclareLocal(ins.pc, rhs); block.stack.set(ins.reg, lhs); block.stack.push(local); block.add(local); break; } case Opcode.IncI: { DIncDec inc = new DIncDec(block.stack.pri, 1); block.add(inc); break; } case Opcode.DecI: { DIncDec dec = new DIncDec(block.stack.pri, -1); block.add(dec); break; } case Opcode.IncLocal: { LIncLocal ins = (LIncLocal)uins; DDeclareLocal local = block.stack.getName(ins.offset); DIncDec inc = new DIncDec(local, 1); block.add(inc); break; } case Opcode.IncReg: { LIncReg ins = (LIncReg)uins; DIncDec dec = new DIncDec(block.stack.reg(ins.reg), 1); block.add(dec); break; } case Opcode.DecLocal: { LDecLocal ins = (LDecLocal)uins; DDeclareLocal local = block.stack.getName(ins.offset); DIncDec dec = new DIncDec(local, -1); block.add(dec); break; } case Opcode.DecReg: { LDecReg ins = (LDecReg)uins; DIncDec dec = new DIncDec(block.stack.reg(ins.reg), -1); block.add(dec); break; } case Opcode.Return: { DReturn node = new DReturn(block.stack.pri); block.add(node); break; } case Opcode.PushLocal: { LPushLocal ins = (LPushLocal)uins; DLoad load = new DLoad(block.stack.getName(ins.offset)); DDeclareLocal local = new DDeclareLocal(ins.pc, load); block.stack.push(local); block.add(load); block.add(local); break; } case Opcode.Exchange: { DNode node = block.stack.alt; block.stack.set(Register.Alt, block.stack.pri); block.stack.set(Register.Pri, node); break; } case Opcode.Unary: { LUnary ins = (LUnary)uins; DUnary unary = new DUnary(ins.spop, block.stack.reg(ins.reg)); block.stack.set(Register.Pri, unary); block.add(unary); break; } case Opcode.Binary: { LBinary ins = (LBinary)uins; DBinary binary = new DBinary(ins.spop, block.stack.reg(ins.lhs), block.stack.reg(ins.rhs)); block.stack.set(Register.Pri, binary); block.add(binary); break; } case Opcode.PushGlobal: { LPushGlobal ins = (LPushGlobal)uins; Variable global = file_.lookupGlobal(ins.address); if (global == null) { global = file_.lookupVariable(ins.pc, ins.address, Scope.Static); } DGlobal dglobal = new DGlobal(global); DNode node = new DLoad(dglobal); DDeclareLocal local = new DDeclareLocal(ins.pc, node); block.stack.push(local); block.add(dglobal); block.add(node); block.add(local); break; } case Opcode.LoadGlobal: { LLoadGlobal ins = (LLoadGlobal)uins; Variable global = file_.lookupGlobal(ins.address); if (global == null) { global = file_.lookupVariable(ins.pc, ins.address, Scope.Static); } DNode dglobal = new DGlobal(global); DNode node = new DLoad(dglobal); block.stack.set(ins.reg, node); block.add(dglobal); block.add(node); break; } case Opcode.StoreGlobal: { LStoreGlobal ins = (LStoreGlobal)uins; Variable global = file_.lookupGlobal(ins.address); if (global == null) { global = file_.lookupVariable(ins.pc, ins.address, Scope.Static); } DGlobal node = new DGlobal(global); DStore store = new DStore(node, block.stack.reg(ins.reg)); block.add(node); block.add(store); break; } case Opcode.Call: { LCall ins = (LCall)uins; Function f = file_.lookupFunction((uint)ins.address); DConstant args = (DConstant)block.stack.popValue(); List <DNode> arguments = new List <DNode>(); for (int i = 0; i < args.value; i++) { arguments.Add(block.stack.popName()); } DCall call = new DCall(f, arguments.ToArray()); block.stack.set(Register.Pri, call); block.add(call); break; } case Opcode.EqualConstant: { LEqualConstant ins = (LEqualConstant)uins; DConstant c = new DConstant(ins.value); DBinary node = new DBinary(SPOpcode.eq, block.stack.reg(ins.reg), c); block.stack.set(Register.Pri, node); block.add(c); block.add(node); break; } case Opcode.LoadIndex: { LLoadIndex ins = (LLoadIndex)uins; DArrayRef aref = new DArrayRef(block.stack.alt, block.stack.pri, ins.shift); DLoad load = new DLoad(aref); block.stack.set(Register.Pri, load); block.add(aref); block.add(load); break; } case Opcode.ZeroGlobal: { LZeroGlobal ins = (LZeroGlobal)uins; Variable global = file_.lookupGlobal(ins.address); DNode dglobal = new DGlobal(global); DConstant rhs = new DConstant(0); DStore lhs = new DStore(dglobal, rhs); block.add(dglobal); block.add(rhs); block.add(lhs); break; } case Opcode.IncGlobal: { LIncGlobal ins = (LIncGlobal)uins; Variable global = file_.lookupGlobal(ins.address); DNode dglobal = new DGlobal(global); DLoad load = new DLoad(dglobal); DConstant val = new DConstant(1); DBinary add = new DBinary(SPOpcode.add, load, val); DStore store = new DStore(dglobal, add); block.add(load); block.add(val); block.add(add); block.add(store); break; } case Opcode.StoreGlobalConstant: { LStoreGlobalConstant lstore = (LStoreGlobalConstant)uins; Variable var = file_.lookupGlobal(lstore.address); DConstant val = new DConstant(lstore.value); DGlobal global = new DGlobal(var); DStore store = new DStore(global, val); block.add(val); block.add(global); block.add(store); break; } case Opcode.StoreLocalConstant: { LStoreLocalConstant lstore = (LStoreLocalConstant)uins; DDeclareLocal var = block.stack.getName(lstore.address); DConstant val = new DConstant(lstore.value); DStore store = new DStore(var, val); block.add(val); block.add(store); break; } case Opcode.ZeroLocal: { LZeroLocal lstore = (LZeroLocal)uins; DDeclareLocal var = block.stack.getName(lstore.address); DConstant val = new DConstant(0); DStore store = new DStore(var, val); block.add(val); block.add(store); break; } case Opcode.Heap: { LHeap ins = (LHeap)uins; DHeap heap = new DHeap(ins.amount); block.add(heap); block.stack.set(Register.Alt, heap); break; } case Opcode.MemCopy: { LMemCopy ins = (LMemCopy)uins; DMemCopy copy = new DMemCopy(block.stack.alt, block.stack.pri, ins.bytes); block.add(copy); break; } case Opcode.Switch: { LSwitch ins = (LSwitch)uins; DSwitch switch_ = new DSwitch(block.stack.pri, ins); block.add(switch_); break; } default: throw new Exception("unhandled opcode"); } } for (int i = 0; i < block.lir.idominated.Length; i++) { LBlock lir = block.lir.idominated[i]; traverse(blocks_[lir.id]); } }
private LogicChain buildLogicChain(NodeBlock block, NodeBlock earlyExitStop, out NodeBlock join) { DJumpCondition jcc = (DJumpCondition)block.nodes.last; LogicChain chain = new LogicChain(ToLogicOp(jcc)); // Grab the true target, which will be either the "1" or "0" // branch of the AND/OR expression. NodeBlock earlyExit = BlockAnalysis.EffectiveTarget(jcc.trueTarget); NodeBlock exprBlock = block; do { do { DJumpCondition childJcc = (DJumpCondition)exprBlock.nodes.last; if (BlockAnalysis.EffectiveTarget(childJcc.trueTarget) != earlyExit) { // Parse a sub-expression. NodeBlock innerJoin; LogicChain rhs = buildLogicChain(exprBlock, earlyExit, out innerJoin); AssertInnerJoinValidity(innerJoin, earlyExit); chain.append(rhs); exprBlock = innerJoin; childJcc = (DJumpCondition)exprBlock.nodes.last; } else { chain.append(childJcc.getOperand(0)); } exprBlock = childJcc.falseTarget; } while (exprBlock.nodes.last.type == NodeType.JumpCondition); do { // We have reached the end of a sequence - a block containing // a Constant and a Jump to the join point of the sequence. //Debug.Assert(exprBlock.lir.instructions[0].op == Opcode.Constant); // The next block is the join point. NodeBlock condBlock = SingleTarget(exprBlock); var last = condBlock.nodes.last; DJumpCondition condJcc; try { condJcc = (DJumpCondition)last; } catch (Exception e) { throw new LogicChainConversionException(e.Message); } join = condBlock; // If the cond block is the tagret of the early stop, we've // gone a tad too far. This is the case for a simple // expression like (a && b) || c. if (earlyExitStop != null && SingleTarget(earlyExitStop) == condBlock) { return(chain); } // If the true connects back to the early exit stop, we're // done. if (BlockAnalysis.EffectiveTarget(condJcc.trueTarget) == earlyExitStop) { return(chain); } // If the true target does not have a shared target, we're // done parsing the whole logic chain. if (!HasSharedTarget(condBlock, condJcc)) { return(chain); } // Otherwise, there is another link in the chain. This link // joins the existing chain to a new subexpression, which // actually starts hanging off the false branch of this // conditional. earlyExit = BlockAnalysis.EffectiveTarget(condJcc.trueTarget); // Build the right-hand side of the expression. NodeBlock innerJoin; LogicChain rhs = buildLogicChain(condJcc.falseTarget, earlyExit, out innerJoin); AssertInnerJoinValidity(innerJoin, earlyExit); // Build the full expression. LogicChain root = new LogicChain(ToLogicOp(condJcc)); root.append(chain); root.append(rhs); chain = root; // If the inner join's false target is a conditional, the // outer expression may continue. DJumpCondition innerJcc = (DJumpCondition)innerJoin.nodes.last; if (innerJcc.falseTarget.nodes.last.type == NodeType.JumpCondition) { exprBlock = innerJcc.falseTarget; break; } // Finally, the new expression block is always the early exit // block. It's on the "trueTarget" edge of the expression, // whereas incoming into this loop it's on the "falseTarget" // edge, but this does not matter. exprBlock = earlyExit; } while (true); } while (true); }
private static void AssertInnerJoinValidity(NodeBlock join, NodeBlock earlyExit) { DJumpCondition jcc = (DJumpCondition)join.nodes.last; //Debug.Assert(BlockAnalysis.EffectiveTarget(jcc.trueTarget) == earlyExit || join == SingleTarget(earlyExit)); }
private IfBlock traverseComplexIf(NodeBlock block, DJumpCondition jcc) { // Degenerate case: using || or &&, or any combination thereof, // will generate a chain of n+1 conditional blocks, where each // |n| has a target to a shared "success" block, setting a // phony variable. We decompose this giant mess into the intended // sequence of expressions. NodeBlock join; LogicChain chain = buildLogicChain(block, null, out join); DJumpCondition finalJcc = (DJumpCondition)join.nodes.last; //Debug.Assert(finalJcc.spop == SPOpcode.jzer); // The final conditional should have the normal dominator // properties: 2 or 3 idoms, depending on the number of arms. // Because of critical edge splitting, we may have 3 idoms // even if there are only actually two arms. NodeBlock joinBlock = findJoinOfSimpleIf(join, finalJcc); // If an AND chain reaches its end, the result is 1. jzer tests // for zero, so this is effectively testing (!success). // If an OR expression reaches its end, the result is 0. jzer // tests for zero, so this is effectively testing if (failure). // // In both cases, the true target represents a failure, so flip // the targets around. NodeBlock trueBlock = finalJcc.falseTarget; NodeBlock falseBlock = finalJcc.trueTarget; // If there is no join block, both arms terminate control flow, // eliminate one arm and use the other as a join point. if (joinBlock == null) { joinBlock = falseBlock; } if (join.lir.idominated.Length == 2 || BlockAnalysis.EffectiveTarget(falseBlock) == joinBlock) { if (join.lir.idominated.Length == 3) { joinBlock = BlockAnalysis.EffectiveTarget(falseBlock); } // One-armed structure. pushScope(joinBlock); ControlBlock trueArm1 = traverseBlock(trueBlock); popScope(); ControlBlock joinArm1 = traverseBlock(joinBlock); return(new IfBlock(block, chain, trueArm1, joinArm1)); } //Debug.Assert(join.lir.idominated.Length == 3); pushScope(joinBlock); ControlBlock trueArm2 = traverseBlock(trueBlock); ControlBlock falseArm = traverseBlock(falseBlock); popScope(); ControlBlock joinArm2 = traverseBlock(joinBlock); return(new IfBlock(block, chain, trueArm2, falseArm, joinArm2)); }