/// <summary> /// Returns a (deterministic) automaton that accepts the complement of the /// language of the given automaton. /// <para/> /// Complexity: linear in number of states (if already deterministic). /// </summary> public static Automaton Complement(Automaton a) { a = a.CloneExpandedIfRequired(); a.Determinize(); a.Totalize(); foreach (State p in a.GetNumberedStates()) { p.accept = !p.accept; } a.RemoveDeadTransitions(); return(a); }
/// <summary> /// Minimizes the given automaton using Hopcroft's algorithm. /// </summary> public static void MinimizeHopcroft(Automaton a) { a.Determinize(); if (a.initial.numTransitions == 1) { Transition t = a.initial.TransitionsArray[0]; if (t.to == a.initial && t.min == Character.MIN_CODE_POINT && t.max == Character.MAX_CODE_POINT) { return; } } a.Totalize(); // initialize data structures int[] sigma = a.GetStartPoints(); State[] states = a.GetNumberedStates(); int sigmaLen = sigma.Length, statesLen = states.Length; List <State>[,] reverse = new List <State> [statesLen, sigmaLen]; ISet <State>[] partition = new EquatableSet <State> [statesLen]; List <State>[] splitblock = new List <State> [statesLen]; int[] block = new int[statesLen]; StateList[,] active = new StateList[statesLen, sigmaLen]; StateListNode[,] active2 = new StateListNode[statesLen, sigmaLen]; LinkedList <Int32Pair> pending = new LinkedList <Int32Pair>(); OpenBitSet pending2 = new OpenBitSet(sigmaLen * statesLen); OpenBitSet split = new OpenBitSet(statesLen), refine = new OpenBitSet(statesLen), refine2 = new OpenBitSet(statesLen); for (int q = 0; q < statesLen; q++) { splitblock[q] = new List <State>(); partition[q] = new EquatableSet <State>(); for (int x = 0; x < sigmaLen; x++) { active[q, x] = new StateList(); } } // find initial partition and reverse edges for (int q = 0; q < statesLen; q++) { State qq = states[q]; int j = qq.accept ? 0 : 1; partition[j].Add(qq); block[q] = j; for (int x = 0; x < sigmaLen; x++) { //List<State>[] r = reverse[qq.Step(sigma[x]).number]; var r = qq.Step(sigma[x]).number; if (reverse[r, x] == null) { reverse[r, x] = new List <State>(); } reverse[r, x].Add(qq); } } // initialize active sets for (int j = 0; j <= 1; j++) { for (int x = 0; x < sigmaLen; x++) { foreach (State qq in partition[j]) { if (reverse[qq.number, x] != null) { active2[qq.number, x] = active[j, x].Add(qq); } } } } // initialize pending for (int x = 0; x < sigmaLen; x++) { int j = (active[0, x].Count <= active[1, x].Count) ? 0 : 1; pending.AddLast(new Int32Pair(j, x)); pending2.Set(x * statesLen + j); } // process pending until fixed point int k = 2; while (pending.Count > 0) { Int32Pair ip = pending.First.Value; pending.Remove(ip); int p = ip.N1; int x = ip.N2; pending2.Clear(x * statesLen + p); // find states that need to be split off their blocks for (StateListNode m = active[p, x].First; m != null; m = m.Next) { List <State> r = reverse[m.Q.number, x]; if (r != null) { foreach (State s in r) { int i = s.number; if (!split.Get(i)) { split.Set(i); int j = block[i]; splitblock[j].Add(s); if (!refine2.Get(j)) { refine2.Set(j); refine.Set(j); } } } } } // refine blocks for (int j = refine.NextSetBit(0); j >= 0; j = refine.NextSetBit(j + 1)) { List <State> sb = splitblock[j]; if (sb.Count < partition[j].Count) { ISet <State> b1 = partition[j]; ISet <State> b2 = partition[k]; foreach (State s in sb) { b1.Remove(s); b2.Add(s); block[s.number] = k; for (int c = 0; c < sigmaLen; c++) { StateListNode sn = active2[s.number, c]; if (sn != null && sn.Sl == active[j, c]) { sn.Remove(); active2[s.number, c] = active[k, c].Add(s); } } } // update pending for (int c = 0; c < sigmaLen; c++) { int aj = active[j, c].Count, ak = active[k, c].Count, ofs = c * statesLen; if (!pending2.Get(ofs + j) && 0 < aj && aj <= ak) { pending2.Set(ofs + j); pending.AddLast(new Int32Pair(j, c)); } else { pending2.Set(ofs + k); pending.AddLast(new Int32Pair(k, c)); } } k++; } refine2.Clear(j); foreach (State s in sb) { split.Clear(s.number); } sb.Clear(); } refine.Clear(0, refine.Length - 1); } // make a new state for each equivalence class, set initial state State[] newstates = new State[k]; for (int n = 0; n < newstates.Length; n++) { State s = new State(); newstates[n] = s; foreach (State q in partition[n]) { if (q == a.initial) { a.initial = s; } s.accept = q.accept; s.number = q.number; // select representative q.number = n; } } // build transitions and set acceptance for (int n = 0; n < newstates.Length; n++) { State s = newstates[n]; s.accept = states[s.number].accept; foreach (Transition t in states[s.number].GetTransitions()) { s.AddTransition(new Transition(t.min, t.max, newstates[t.to.number])); } } a.ClearNumberedStates(); a.RemoveDeadTransitions(); }
/// <summary> /// Simple, original brics implementation of Determinize() /// Determinizes the given automaton using the given set of initial states. /// </summary> public static void DeterminizeSimple(Automaton a, ISet <State> initialset) { int[] points = a.GetStartPoints(); // subset construction IDictionary <ISet <State>, ISet <State> > sets = new Dictionary <ISet <State>, ISet <State> >(); LinkedList <ISet <State> > worklist = new LinkedList <ISet <State> >(); IDictionary <ISet <State>, State> newstate = new Dictionary <ISet <State>, State>(); sets[initialset] = initialset; worklist.AddLast(initialset); a.initial = new State(); newstate[initialset] = a.initial; while (worklist.Count > 0) { ISet <State> s = worklist.First.Value; worklist.Remove(s); State r = newstate[s]; foreach (State q in s) { if (q.accept) { r.accept = true; break; } } for (int n = 0; n < points.Length; n++) { ISet <State> p = new EquatableSet <State>(); foreach (State q in s) { foreach (Transition t in q.GetTransitions()) { if (t.min <= points[n] && points[n] <= t.max) { p.Add(t.to); } } } if (!sets.ContainsKey(p)) { sets[p] = p; worklist.AddLast(p); newstate[p] = new State(); } State q_ = newstate[p]; int min = points[n]; int max; if (n + 1 < points.Length) { max = points[n + 1] - 1; } else { max = Character.MAX_CODE_POINT; } r.AddTransition(new Transition(min, max, q_)); } } a.deterministic = true; a.ClearNumberedStates(); a.RemoveDeadTransitions(); }
/// <summary> /// Returns an automaton that accepts the intersection of the languages of the /// given automata. Never modifies the input automata languages. /// <para/> /// Complexity: quadratic in number of states. /// </summary> public static Automaton Intersection(Automaton a1, Automaton a2) { if (a1.IsSingleton) { if (BasicOperations.Run(a2, a1.singleton)) { return(a1.CloneIfRequired()); } else { return(BasicAutomata.MakeEmpty()); } } if (a2.IsSingleton) { if (BasicOperations.Run(a1, a2.singleton)) { return(a2.CloneIfRequired()); } else { return(BasicAutomata.MakeEmpty()); } } if (a1 == a2) { return(a1.CloneIfRequired()); } Transition[][] transitions1 = a1.GetSortedTransitions(); Transition[][] transitions2 = a2.GetSortedTransitions(); Automaton c = new Automaton(); LinkedList <StatePair> worklist = new LinkedList <StatePair>(); Dictionary <StatePair, StatePair> newstates = new Dictionary <StatePair, StatePair>(); StatePair p = new StatePair(c.initial, a1.initial, a2.initial); worklist.AddLast(p); newstates[p] = p; while (worklist.Count > 0) { p = worklist.First.Value; worklist.Remove(p); p.s.accept = p.S1.accept && p.S2.accept; Transition[] t1 = transitions1[p.S1.number]; Transition[] t2 = transitions2[p.S2.number]; for (int n1 = 0, b2 = 0; n1 < t1.Length; n1++) { while (b2 < t2.Length && t2[b2].max < t1[n1].min) { b2++; } for (int n2 = b2; n2 < t2.Length && t1[n1].max >= t2[n2].min; n2++) { if (t2[n2].max >= t1[n1].min) { StatePair q = new StatePair(t1[n1].to, t2[n2].to); StatePair r; newstates.TryGetValue(q, out r); if (r == null) { q.s = new State(); worklist.AddLast(q); newstates[q] = q; r = q; } int min = t1[n1].min > t2[n2].min ? t1[n1].min : t2[n2].min; int max = t1[n1].max < t2[n2].max ? t1[n1].max : t2[n2].max; p.s.AddTransition(new Transition(min, max, r.s)); } } } } c.deterministic = a1.deterministic && a2.deterministic; c.RemoveDeadTransitions(); c.CheckMinimizeAlways(); return(c); }
/// <summary> /// Simple, original brics implementation of Determinize() /// Determinizes the given automaton using the given set of initial states. /// </summary> public static void DeterminizeSimple(Automaton a, ISet <State> initialset) { int[] points = a.GetStartPoints(); // subset construction IDictionary <ISet <State>, ISet <State> > sets = new Dictionary <ISet <State>, ISet <State> >(); Queue <ISet <State> > worklist = new Queue <ISet <State> >();// LUCENENET specific - Queue is much more performant than LinkedList IDictionary <ISet <State>, State> newstate = new Dictionary <ISet <State>, State>(); sets[initialset] = initialset; worklist.Enqueue(initialset); a.initial = new State(); newstate[initialset] = a.initial; while (worklist.Count > 0) { ISet <State> s = worklist.Dequeue(); State r = newstate[s]; foreach (State q in s) { if (q.accept) { r.accept = true; break; } } for (int n = 0; n < points.Length; n++) { ISet <State> p = new JCG.HashSet <State>(); foreach (State q in s) { foreach (Transition t in q.GetTransitions()) { if (t.min <= points[n] && points[n] <= t.max) { p.Add(t.to); } } } if (!sets.ContainsKey(p)) { sets[p] = p; worklist.Enqueue(p); newstate[p] = new State(); } State q_ = newstate[p]; int min = points[n]; int max; if (n + 1 < points.Length) { max = points[n + 1] - 1; } else { max = Character.MaxCodePoint; } r.AddTransition(new Transition(min, max, q_)); } } a.deterministic = true; a.ClearNumberedStates(); a.RemoveDeadTransitions(); }
/// <summary> /// Simple, original brics implementation of determinize() /// Determinizes the given automaton using the given set of initial states. /// </summary> public static void DeterminizeSimple(Automaton a, ISet<State> initialset) { int[] points = a.StartPoints; // subset construction IDictionary<ISet<State>, ISet<State>> sets = new Dictionary<ISet<State>, ISet<State>>(); LinkedList<ISet<State>> worklist = new LinkedList<ISet<State>>(); IDictionary<ISet<State>, State> newstate = new Dictionary<ISet<State>, State>(); sets[initialset] = initialset; worklist.AddLast(initialset); a.InitialState = new State(); newstate[initialset] = a.InitialState; while (worklist.Count > 0) { ISet<State> s = worklist.First.Value; worklist.RemoveFirst(); State r = newstate[s]; foreach (State q in s) { if (q.Accept) { r.Accept = true; break; } } for (int n = 0; n < points.Length; n++) { ISet<State> p = new HashSet<State>(); foreach (State q in s) { foreach (Transition t in q.Transitions) { if (t.Min <= points[n] && points[n] <= t.Max) { p.Add(t.Dest); } } } if (!sets.ContainsKey(p)) { sets[p] = p; worklist.AddLast(p); newstate[p] = new State(); } State q_ = newstate[p]; int min = points[n]; int max; if (n + 1 < points.Length) { max = points[n + 1] - 1; } else { max = Character.MAX_CODE_POINT; } r.AddTransition(new Transition(min, max, q_)); } } a.Deterministic = true; a.ClearNumberedStates(); a.RemoveDeadTransitions(); }
/// <summary> /// Minimizes the given automaton using Hopcroft's algorithm. /// </summary> public static void MinimizeHopcroft(Automaton a) { a.Determinize(); if (a.Initial.numTransitions == 1) { Transition t = a.Initial.TransitionsArray[0]; if (t.To == a.Initial && t.Min_Renamed == Character.MIN_CODE_POINT && t.Max_Renamed == Character.MAX_CODE_POINT) { return; } } a.Totalize(); // initialize data structures int[] sigma = a.StartPoints; State[] states = a.NumberedStates; int sigmaLen = sigma.Length, statesLen = states.Length; List<State>[,] reverse = new List<State>[statesLen, sigmaLen]; HashSet<State>[] partition = new HashSet<State>[statesLen]; List<State>[] splitblock = new List<State>[statesLen]; int[] block = new int[statesLen]; StateList[,] active = new StateList[statesLen, sigmaLen]; StateListNode[,] active2 = new StateListNode[statesLen, sigmaLen]; LinkedList<IntPair> pending = new LinkedList<IntPair>(); BitArray pending2 = new BitArray(sigmaLen * statesLen); BitArray split = new BitArray(statesLen), refine = new BitArray(statesLen), refine2 = new BitArray(statesLen); for (int q = 0; q < statesLen; q++) { splitblock[q] = new List<State>(); partition[q] = new HashSet<State>(); for (int x = 0; x < sigmaLen; x++) { active[q, x] = new StateList(); } } // find initial partition and reverse edges for (int q = 0; q < statesLen; q++) { State qq = states[q]; int j = qq.accept ? 0 : 1; partition[j].Add(qq); block[q] = j; for (int x = 0; x < sigmaLen; x++) { //List<State>[] r = reverse[qq.Step(sigma[x]).number]; var r = qq.Step(sigma[x]).number; if (reverse[r, x] == null) { reverse[r, x] = new List<State>(); } reverse[r, x].Add(qq); } } // initialize active sets for (int j = 0; j <= 1; j++) { for (int x = 0; x < sigmaLen; x++) { foreach (State qq in partition[j]) { if (reverse[qq.number, x] != null) { active2[qq.number, x] = active[j, x].Add(qq); } } } } // initialize pending for (int x = 0; x < sigmaLen; x++) { int j = (active[0, x].Size <= active[1, x].Size) ? 0 : 1; pending.AddLast(new IntPair(j, x)); pending2.Set(x * statesLen + j, true); } // process pending until fixed point int k = 2; while (pending.Count > 0) { IntPair ip = pending.First.Value; pending.RemoveFirst(); int p = ip.N1; int x = ip.N2; pending2.Set(x * statesLen + p, false); // find states that need to be split off their blocks for (StateListNode m = active[p, x].First; m != null; m = m.Next) { List<State> r = reverse[m.q.number, x]; if (r != null) { foreach (State s in r) { int i = s.number; if (!split.Get(i)) { split.Set(i, true); int j = block[i]; splitblock[j].Add(s); if (!refine2.Get(j)) { refine2.Set(j, true); refine.Set(j, true); } } } } } // refine blocks for (int j = Number.NextSetBit(refine, 0); j >= 0; j = Number.NextSetBit(refine, j + 1)) { List<State> sb = splitblock[j]; if (sb.Count < partition[j].Count) { HashSet<State> b1 = partition[j]; HashSet<State> b2 = partition[k]; foreach (State s in sb) { b1.Remove(s); b2.Add(s); block[s.number] = k; for (int c = 0; c < sigmaLen; c++) { StateListNode sn = active2[s.number, c]; if (sn != null && sn.Sl == active[j, c]) { sn.Remove(); active2[s.number, c] = active[k, c].Add(s); } } } // update pending for (int c = 0; c < sigmaLen; c++) { int aj = active[j, c].Size, ak = active[k, c].Size, ofs = c * statesLen; if (!pending2.Get(ofs + j) && 0 < aj && aj <= ak) { pending2.Set(ofs + j, true); pending.AddLast(new IntPair(j, c)); } else { pending2.Set(ofs + k, true); pending.AddLast(new IntPair(k, c)); } } k++; } refine2.Set(j, false); foreach (State s in sb) { split.Set(s.number, false); } sb.Clear(); } refine.SetAll(false); } // make a new state for each equivalence class, set initial state State[] newstates = new State[k]; for (int n = 0; n < newstates.Length; n++) { State s = new State(); newstates[n] = s; foreach (State q in partition[n]) { if (q == a.Initial) { a.Initial = s; } s.accept = q.accept; s.number = q.number; // select representative q.number = n; } } // build transitions and set acceptance for (int n = 0; n < newstates.Length; n++) { State s = newstates[n]; s.accept = states[s.number].accept; foreach (Transition t in states[s.number].Transitions) { s.AddTransition(new Transition(t.Min_Renamed, t.Max_Renamed, newstates[t.To.number])); } } a.ClearNumberedStates(); a.RemoveDeadTransitions(); }