public string GetTree(string sourceFile) { _sourceFile = sourceFile; RawDataSource samples = new RawDataSource(_sourceFile); TreeAttributeCollection attributes = samples.GetValidAttributeCollection(); DecisionTree id3 = new DecisionTree(); TreeNode root = id3.mountTree(samples, "result", attributes); return(PrintNode(root, "") + Environment.NewLine + PrologPrintNode(root, "", "result")); }
public void GenRulesFromMt(SIProlog pEngine, string sourceMt, string destMt, string targetAttribute) { MtDataSource samples = new MtDataSource(pEngine, sourceMt); TreeAttributeCollection attributes = samples.GetValidAttributeCollection(targetAttribute); DecisionTree id3 = new DecisionTree(); TreeNode root = id3.mountTree(samples, targetAttribute, attributes); string prologCode = PrologPrintNode(root, "", targetAttribute); pEngine.insertKB(prologCode, destMt); string codeSummary = PrintNode(root, "") + Environment.NewLine + PrologPrintNode(root, "", "result"); Console.WriteLine(codeSummary); }
/// <summary> ///Returns the best attribute. /// </summary> /// <param name="attributes"> A vector with attributes </param> /// <returns>Returns which has higher gain </returns> private TreeAttribute getBestAttribute(DataTable samples, TreeAttributeCollection attributes) { double maxGain = -9999999.0; TreeAttribute result = null; foreach (TreeAttribute attribute in attributes) { double aux = gain(samples, attribute); if (aux > maxGain) { maxGain = aux; result = attribute; } } return(result); }
public TreeAttributeCollection GetValidAttributeCollection() { TreeAttributeCollection returnCollection = new TreeAttributeCollection(); foreach (DataColumn column in this.Columns) { TreeAttribute currentAttribute = new TreeAttribute(column.ColumnName, GetValuesFromColumn(column.ColumnName)); if (returnCollection.ContainsAttribute(currentAttribute) || currentAttribute.AttributeName.ToUpper().Trim() == "RESULT") { continue; } returnCollection.Add(currentAttribute); } return(returnCollection); }
/// <summary> /// Sets up a decision tree based on samples submitted /// </summary> /// <param name="samples">Table with samples that will be provided for mounting the tree </param> /// <param name="targetAttribute">Name column of the table that otherwise has the value true or false to /// Validate or not a sample </param> /// <returns>The root of the decision tree mounted</returns></returns?> public TreeNode mountTree(DataTable samples, string targetAttribute, TreeAttributeCollection attributes) { _sampleData = samples; return(internalMountTree(_sampleData, targetAttribute, attributes)); }
/// <summary> /// Sets up a decision tree based on samples submitted /// </summary> /// <param name="samples">Table with samples that will be provided for mounting the tree </param> /// <param name="targetAttribute"> Name column of the table that otherwise has the value true or false to /// Validate or not a sample</param> /// <returns>The root of the decision tree mounted </returns></returns?> private TreeNode internalMountTree(DataTable samples, string targetAttribute, TreeAttributeCollection attributes) { if (allSamplesAreUniform(samples, targetAttribute) == true) { return(new TreeNode(new OutcomeTreeAttribute(getUniformRefValue(samples, targetAttribute)))); } //if (allSamplesArePositive(samples, targetAttribute) == true) // return new TreeNode(new OutcomeTreeAttribute(true)); //if (allSamplesAreNegative(samples, targetAttribute) == true) // return new TreeNode(new OutcomeTreeAttribute(false)); if (attributes.Count == 0) { return(new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(samples, targetAttribute)))); } mTotal = samples.Rows.Count; mTargetAttribute = targetAttribute; mTotalPositives = countTotalPositives(samples); mEntropySet = getCalculatedEntropy(mTotalPositives, mTotal - mTotalPositives); TreeAttribute bestAttribute = getBestAttribute(samples, attributes); TreeNode root = new TreeNode(bestAttribute); if (bestAttribute == null) { return(root); } PossibleValueCollection bestAttrValues = bestAttribute.PossibleValues; bool continousSet = isContinousSet(bestAttrValues); //DataTable aSample = samples.Clone(); if (continousSet) { string value = bestSplitValue(samples, bestAttribute); { DataTable aSample = samples.Clone(); //First Below then Above DataRow[] rows; string cond = bestAttribute.AttributeName + " <= " + "" + value + ""; rows = samples.Select(cond); aSample.Rows.Clear(); foreach (DataRow row in rows) { aSample.Rows.Add(row.ItemArray); Console.WriteLine(" SPLIT {0} ROW:", cond); foreach (DataColumn myCol in samples.Columns) { Console.WriteLine(" " + row[myCol]); } } // Create a new attribute list unless the attribute which is the current best attribute TreeAttributeCollection aAttributes = new TreeAttributeCollection(); //ArrayList aAttributes = new ArrayList(attributes.Count - 1); for (int i = 0; i < attributes.Count; i++) { if (attributes[i].AttributeName != bestAttribute.AttributeName) { aAttributes.Add(attributes[i]); } } //Recycle the best continous attribute if there are others if (aAttributes.Count > 0) { aAttributes.Add(bestAttribute); } // Create a new attribute list unless the attribute which is the current best attribute if (rows.Length == 0) { //return new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(aSample, targetAttribute))); return(new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(samples, targetAttribute)))); } else { DecisionTree dc3 = new DecisionTree(); TreeNode ChildNode = dc3.mountTree(aSample, targetAttribute, aAttributes); root.AddTreeNode(ChildNode, value, "leq"); } } { DataTable aSample = samples.Clone(); DataRow[] rows2; string cond = bestAttribute.AttributeName + " > " + "" + value + ""; rows2 = samples.Select(cond); aSample.Rows.Clear(); foreach (DataRow row in rows2) { aSample.Rows.Add(row.ItemArray); Console.WriteLine(" SPLIT {0} ROW:", cond); foreach (DataColumn myCol in samples.Columns) { Console.WriteLine(" " + row[myCol]); } } // Create a new attribute list unless the attribute which is the current best attribute TreeAttributeCollection aAttributes2 = new TreeAttributeCollection(); //ArrayList aAttributes = new ArrayList(attributes.Count - 1); for (int i = 0; i < attributes.Count; i++) { if (attributes[i].AttributeName != bestAttribute.AttributeName) { aAttributes2.Add(attributes[i]); } } //Recycle the best continous attribute if there are others if (aAttributes2.Count > 0) { aAttributes2.Add(bestAttribute); } // Create a new attribute list unless the attribute which is the current best attribute if (rows2.Length == 0) { //return new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(aSample, targetAttribute))); return(new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(samples, targetAttribute)))); } else { DecisionTree dc3 = new DecisionTree(); TreeNode ChildNode = dc3.mountTree(aSample, targetAttribute, aAttributes2); root.AddTreeNode(ChildNode, value, "gt"); } } } else { DataTable aSample = samples.Clone(); foreach (string value in bestAttribute.PossibleValues) { // Select all elements with the value of this attribute aSample.Rows.Clear(); DataRow[] rows; rows = samples.Select(bestAttribute.AttributeName + " = " + "'" + value + "'"); foreach (DataRow row in rows) { aSample.Rows.Add(row.ItemArray); } // Select all elements with the value of this attribute // Create a new attribute list unless the attribute which is the current best attribute TreeAttributeCollection aAttributes = new TreeAttributeCollection(); //ArrayList aAttributes = new ArrayList(attributes.Count - 1); for (int i = 0; i < attributes.Count; i++) { if (attributes[i].AttributeName != bestAttribute.AttributeName) { aAttributes.Add(attributes[i]); } } // Create a new attribute list unless the attribute which is the current best attribute if (aSample.Rows.Count == 0) { //return new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(aSample, targetAttribute))); return(new TreeNode(new OutcomeTreeAttribute(getMostCommonValue(samples, targetAttribute)))); } else { DecisionTree dc3 = new DecisionTree(); TreeNode ChildNode = dc3.mountTree(aSample, targetAttribute, aAttributes); root.AddTreeNode(ChildNode, value, "eq"); } } } return(root); }