/// <summary> /// Determines the Range transform for the provided problem. /// </summary> /// <param name="prob">The Problem to analyze</param> /// <param name="lowerBound">The lower bound for scaling</param> /// <param name="upperBound">The upper bound for scaling</param> /// <returns>The Range transform for the problem</returns> public static RangeTransform Compute(svm_problem prob, double lowerBound, double upperBound) { // node indices must be ordered int maxIndex = prob.x.Select(arr => arr.Last().index).Max(); double[] minVals = new double[maxIndex]; double[] maxVals = new double[maxIndex]; int[] count = new int[maxIndex]; for (int i = 0; i < maxIndex; i++) { minVals[i] = double.MaxValue; maxVals[i] = double.MinValue; count[i] = 0; } for (int i = 0; i < prob.l; i++) { for (int j = 0; j < prob.x[i].Length; j++) { int index = prob.x[i][j].index - 1; double value = prob.x[i][j].value; minVals[index] = Math.Min(minVals[index], value); maxVals[index] = Math.Max(maxVals[index], value); count[index]++; } } for (int i = 0; i < maxIndex; i++) { if (count[i] == 0) { minVals[i] = 0; maxVals[i] = 0; } } return new RangeTransform(minVals, maxVals, lowerBound, upperBound); }
// // Interface functions // public static svm_model svm_train(svm_problem prob, svm_parameter param) { svm_model model = new svm_model(); model.param = param; if (param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR) { // regression or one-class-svm model.nr_class = 2; model.label = null; model.nSV = null; model.probA = null; model.probB = null; model.sv_coef = new double[1][]; if (param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)) { model.probA = new double[1]; model.probA[0] = svm_svr_probability(prob, param); } decision_function f = svm_train_one(prob, param, 0, 0); model.rho = new double[1]; model.rho[0] = f.rho; int nSV = 0; int i; for (i = 0; i < prob.l; i++) if (Math.Abs(f.alpha[i]) > 0) ++nSV; model.l = nSV; model.SV = new svm_node[nSV][]; model.sv_coef[0] = new double[nSV]; int j = 0; for (i = 0; i < prob.l; i++) if (Math.Abs(f.alpha[i]) > 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; ++j; } } else { // classification int l = prob.l; int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; int[] perm = new int[l]; // group training data of the same class svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; if (nr_class == 1) svm.info("WARNING: training data in only one class. See README for details." + Environment.NewLine); svm_node[][] x = new svm_node[l][]; int i; for (i = 0; i < l; i++) x[i] = prob.x[perm[i]]; // calculate weighted C double[] weighted_C = new double[nr_class]; for (i = 0; i < nr_class; i++) weighted_C[i] = param.C; for (i = 0; i < param.nr_weight; i++) { int j; for (j = 0; j < nr_class; j++) if (param.weight_label[i] == label[j]) break; if (j == nr_class) Console.Error.WriteLine("WARNING: class label " + param.weight_label[i] + " specified in weight is not found"); else weighted_C[j] *= param.weight[i]; } // train k*(k-1)/2 models bool[] nonzero = new bool[l]; for (i = 0; i < l; i++) nonzero[i] = false; decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2]; double[] probA = null, probB = null; if (param.probability == 1) { probA = new double[nr_class * (nr_class - 1) / 2]; probB = new double[nr_class * (nr_class - 1) / 2]; } int p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { svm_problem sub_prob = new svm_problem(); int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci + cj; sub_prob.x = new svm_node[sub_prob.l][]; sub_prob.y = new double[sub_prob.l]; int k; for (k = 0; k < ci; k++) { sub_prob.x[k] = x[si + k]; sub_prob.y[k] = +1; } for (k = 0; k < cj; k++) { sub_prob.x[ci + k] = x[sj + k]; sub_prob.y[ci + k] = -1; } if (param.probability == 1) { double[] probAB = new double[2]; svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB); probA[p] = probAB[0]; probB[p] = probAB[1]; } f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]); for (k = 0; k < ci; k++) if (!nonzero[si + k] && Math.Abs(f[p].alpha[k]) > 0) nonzero[si + k] = true; for (k = 0; k < cj; k++) if (!nonzero[sj + k] && Math.Abs(f[p].alpha[ci + k]) > 0) nonzero[sj + k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for (i = 0; i < nr_class; i++) model.label[i] = label[i]; model.rho = new double[nr_class * (nr_class - 1) / 2]; for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) model.rho[i] = f[i].rho; if (param.probability == 1) { model.probA = new double[nr_class * (nr_class - 1) / 2]; model.probB = new double[nr_class * (nr_class - 1) / 2]; for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model.probA[i] = probA[i]; model.probB[i] = probB[i]; } } else { model.probA = null; model.probB = null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.nSV = new int[nr_class]; for (i = 0; i < nr_class; i++) { int nSV = 0; for (int j = 0; j < count[i]; j++) if (nonzero[start[i] + j]) { ++nSV; ++nnz; } model.nSV[i] = nSV; nz_count[i] = nSV; } svm.info("Total nSV = " + nnz + Environment.NewLine); model.l = nnz; model.SV = new svm_node[nnz][]; p = 0; for (i = 0; i < l; i++) if (nonzero[i]) model.SV[p++] = x[i]; int[] nz_start = new int[nr_class]; nz_start[0] = 0; for (i = 1; i < nr_class; i++) nz_start[i] = nz_start[i - 1] + nz_count[i - 1]; model.sv_coef = new double[nr_class - 1][]; for (i = 0; i < nr_class - 1; i++) model.sv_coef[i] = new double[nnz]; p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for (k = 0; k < ci; k++) if (nonzero[si + k]) model.sv_coef[j - 1][q++] = f[p].alpha[k]; q = nz_start[j]; for (k = 0; k < cj; k++) if (nonzero[sj + k]) model.sv_coef[i][q++] = f[p].alpha[ci + k]; ++p; } } return model; }
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int[] data_label = new int[l]; int i; for (i = 0; i < l; i++) { int this_label = (int)(prob.y[i]); int j; for (j = 0; j < nr_class; j++) { if (this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if (j == nr_class) { if (nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; Array.Copy(label, 0, new_data, 0, label.Length); label = new_data; new_data = new int[max_nr_class]; Array.Copy(count, 0, new_data, 0, count.Length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } int[] start = new int[nr_class]; start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + count[i - 1]; for (i = 0; i < l; i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + count[i - 1]; nr_class_ret[0] = nr_class; label_ret[0] = label; start_ret[0] = start; count_ret[0] = count; }
// Return parameter of a Laplace distribution private static double svm_svr_probability(svm_problem prob, svm_parameter param) { int i; int nr_fold = 5; double[] ymv = new double[prob.l]; double mae = 0; svm_parameter newparam = (svm_parameter)param.Clone(); newparam.probability = 0; svm_cross_validation(prob, newparam, nr_fold, ymv); for (i = 0; i < prob.l; i++) { ymv[i] = prob.y[i] - ymv[i]; mae += Math.Abs(ymv[i]); } mae /= prob.l; double std = Math.Sqrt(2 * mae * mae); int count = 0; mae = 0; for (i = 0; i < prob.l; i++) if (Math.Abs(ymv[i]) > 5 * std) count = count + 1; else mae += Math.Abs(ymv[i]); mae /= (prob.l - count); svm.info("Prob. model for test data: target value = predicted value + z, " + Environment.NewLine + "z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + Environment.NewLine); return mae; }
// Cross-validation decision values for probability estimates private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn, double[] probAB) { int i; int nr_fold = 5; int[] perm = new int[prob.l]; double[] dec_values = new double[prob.l]; // random shuffle for (i = 0; i < prob.l; i++) perm[i] = i; for (i = 0; i < prob.l; i++) { int j = i + rand.Next(prob.l - i); { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } } for (i = 0; i < nr_fold; i++) { int begin = i * prob.l / nr_fold; int end = (i + 1) * prob.l / nr_fold; int j, k; svm_problem subprob = new svm_problem(); subprob.l = prob.l - (end - begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k = 0; for (j = 0; j < begin; j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for (j = end; j < prob.l; j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } int p_count = 0, n_count = 0; for (j = 0; j < k; j++) if (subprob.y[j] > 0) p_count++; else n_count++; if (p_count == 0 && n_count == 0) for (j = begin; j < end; j++) dec_values[perm[j]] = 0; else if (p_count > 0 && n_count == 0) for (j = begin; j < end; j++) dec_values[perm[j]] = 1; else if (p_count == 0 && n_count > 0) for (j = begin; j < end; j++) dec_values[perm[j]] = -1; else { svm_parameter subparam = (svm_parameter)param.Clone(); subparam.probability = 0; subparam.C = 1.0; subparam.nr_weight = 2; subparam.weight_label = new int[2]; subparam.weight = new double[2]; subparam.weight_label[0] = +1; subparam.weight_label[1] = -1; subparam.weight[0] = Cp; subparam.weight[1] = Cn; svm_model submodel = svm_train(subprob, subparam); for (j = begin; j < end; j++) { double[] dec_value = new double[1]; svm_predict_values(submodel, prob.x[perm[j]], dec_value); dec_values[perm[j]] = dec_value[0]; // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel.label[0]; } } } sigmoid_train(prob.l, dec_values, prob.y, probAB); }
private static decision_function svm_train_one( svm_problem prob, svm_parameter param, double Cp, double Cn) { double[] alpha = new double[prob.l]; Solver.SolutionInfo si = new Solver.SolutionInfo(); switch (param.svm_type) { case svm_parameter.C_SVC: solve_c_svc(prob, param, alpha, si, Cp, Cn); break; case svm_parameter.NU_SVC: solve_nu_svc(prob, param, alpha, si); break; case svm_parameter.ONE_CLASS: solve_one_class(prob, param, alpha, si); break; case svm_parameter.EPSILON_SVR: solve_epsilon_svr(prob, param, alpha, si); break; case svm_parameter.NU_SVR: solve_nu_svr(prob, param, alpha, si); break; } svm.info("obj = " + si.obj + ", rho = " + si.rho + Environment.NewLine); // output SVs int nSV = 0; int nBSV = 0; for (int i = 0; i < prob.l; i++) { if (Math.Abs(alpha[i]) > 0) { ++nSV; if (prob.y[i] > 0) { if (Math.Abs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if (Math.Abs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } svm.info("nSV = " + nSV + ", nBSV = " + nBSV + Environment.NewLine); decision_function f = new decision_function(); f.alpha = alpha; f.rho = si.rho; return f; }
private static void solve_nu_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double C = param.C; double[] alpha2 = new double[2 * l]; double[] linear_term = new double[2 * l]; short[] y = new short[2 * l]; int i; double sum = C * param.nu * l / 2; for (i = 0; i < l; i++) { alpha2[i] = alpha2[i + l] = Math.Min(sum, C); sum -= alpha2[i]; linear_term[i] = -prob.y[i]; y[i] = 1; linear_term[i + l] = prob.y[i]; y[i + l] = -1; } Solver_NU s = new Solver_NU(); s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, C, C, param.eps, si, param.shrinking); svm.info("epsilon = " + (-si.r) + Environment.NewLine); for (i = 0; i < l; i++) alpha[i] = alpha2[i] - alpha2[i + l]; }
private static void solve_one_class(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] zeros = new double[l]; short[] ones = new short[l]; int i; int n = (int)(param.nu * prob.l); // # of alpha's at upper bound for (i = 0; i < n; i++) alpha[i] = 1; if (n < prob.l) alpha[n] = param.nu * prob.l - n; for (i = n + 1; i < l; i++) alpha[i] = 0; for (i = 0; i < l; i++) { zeros[i] = 0; ones[i] = 1; } Solver s = new Solver(); s.Solve(l, new ONE_CLASS_Q(prob, param), zeros, ones, alpha, 1.0, 1.0, param.eps, si, param.shrinking); }
private static void solve_c_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si, double Cp, double Cn) { int l = prob.l; double[] minus_ones = new double[l]; short[] y = new short[l]; int i; for (i = 0; i < l; i++) { alpha[i] = 0; minus_ones[i] = -1; if (prob.y[i] > 0) y[i] = +1; else y[i] = -1; } Solver s = new Solver(); s.Solve(l, new SVC_Q(prob, param, y), minus_ones, y, alpha, Cp, Cn, param.eps, si, param.shrinking); double sum_alpha = 0; for (i = 0; i < l; i++) sum_alpha += alpha[i]; if (Cp == Cn) svm.info("nu = " + sum_alpha / (Cp * prob.l) + Environment.NewLine); for (i = 0; i < l; i++) alpha[i] *= y[i]; }
private static void solve_nu_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int i; int l = prob.l; double nu = param.nu; short[] y = new short[l]; for (i = 0; i < l; i++) if (prob.y[i] > 0) y[i] = +1; else y[i] = -1; double sum_pos = nu * l / 2; double sum_neg = nu * l / 2; for (i = 0; i < l; i++) if (y[i] == +1) { alpha[i] = Math.Min(1.0, sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = Math.Min(1.0, sum_neg); sum_neg -= alpha[i]; } double[] zeros = new double[l]; for (i = 0; i < l; i++) zeros[i] = 0; Solver_NU s = new Solver_NU(); s.Solve(l, new SVC_Q(prob, param, y), zeros, y, alpha, 1.0, 1.0, param.eps, si, param.shrinking); double r = si.r; svm.info("C = " + 1 / r + Environment.NewLine); for (i = 0; i < l; i++) alpha[i] *= y[i] / r; si.rho /= r; si.obj /= (r * r); si.upper_bound_p = 1 / r; si.upper_bound_n = 1 / r; }
public SVR_Q(svm_problem prob, svm_parameter param) : base(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l, (long)(param.cache_size * (1 << 20))); QD = new double[2 * l]; sign = new short[2 * l]; index = new int[2 * l]; for (int k = 0; k < l; k++) { sign[k] = 1; sign[k + l] = -1; index[k] = k; index[k + l] = k; QD[k] = kernel_function(k, k); QD[k + l] = QD[k]; } buffer = new float[2][]; buffer[0] = new float[2 * l]; buffer[1] = new float[2 * l]; next_buffer = 0; }
public ONE_CLASS_Q(svm_problem prob, svm_parameter param) : base(prob.l, prob.x, param) { cache = new Cache(prob.l, (long)(param.cache_size * (1 << 20))); QD = new double[prob.l]; for (int i = 0; i < prob.l; i++) QD[i] = kernel_function(i, i); }
public SVC_Q(svm_problem prob, svm_parameter param, short[] y_) : base(prob.l, prob.x, param) { y = (short[])y_.Clone(); cache = new Cache(prob.l, (long)(param.cache_size * (1 << 20))); QD = new double[prob.l]; for (int i = 0; i < prob.l; i++) QD[i] = kernel_function(i, i); }
// Stratified cross validation public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target) { int i; int[] fold_start = new int[nr_fold + 1]; int l = prob.l; int[] perm = new int[l]; // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if ((param.svm_type == svm_parameter.C_SVC || param.svm_type == svm_parameter.NU_SVC) && nr_fold < l) { int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm); int nr_class = tmp_nr_class[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; // random shuffle and then data grouped by fold using the array perm int[] fold_count = new int[nr_fold]; int c; int[] index = new int[l]; for (i = 0; i < l; i++) index[i] = perm[i]; for (c = 0; c < nr_class; c++) for (i = 0; i < count[c]; i++) { int j = i + rand.Next(count[c] - i); { int _ = index[start[c] + j]; index[start[c] + j] = index[start[c] + i]; index[start[c] + i] = _; } } for (i = 0; i < nr_fold; i++) { fold_count[i] = 0; for (c = 0; c < nr_class; c++) fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold; } fold_start[0] = 0; for (i = 1; i <= nr_fold; i++) fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; for (c = 0; c < nr_class; c++) for (i = 0; i < nr_fold; i++) { int begin = start[c] + i * count[c] / nr_fold; int end = start[c] + (i + 1) * count[c] / nr_fold; for (int j = begin; j < end; j++) { perm[fold_start[i]] = index[j]; fold_start[i]++; } } fold_start[0] = 0; for (i = 1; i <= nr_fold; i++) fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; } else { for (i = 0; i < l; i++) perm[i] = i; for (i = 0; i < l; i++) { int j = i + rand.Next(l - i); { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } } for (i = 0; i <= nr_fold; i++) fold_start[i] = i * l / nr_fold; } for (i = 0; i < nr_fold; i++) { int begin = fold_start[i]; int end = fold_start[i + 1]; int j, k; svm_problem subprob = new svm_problem(); subprob.l = l - (end - begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k = 0; for (j = 0; j < begin; j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for (j = end; j < l; j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } svm_model submodel = svm_train(subprob, param); if (param.probability == 1 && (param.svm_type == svm_parameter.C_SVC || param.svm_type == svm_parameter.NU_SVC)) { double[] prob_estimates = new double[svm_get_nr_class(submodel)]; for (j = begin; j < end; j++) target[perm[j]] = svm_predict_probability(submodel, prob.x[perm[j]], prob_estimates); } else for (j = begin; j < end; j++) target[perm[j]] = svm_predict(submodel, prob.x[perm[j]]); } }
private static void solve_epsilon_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] alpha2 = new double[2 * l]; double[] linear_term = new double[2 * l]; short[] y = new short[2 * l]; int i; for (i = 0; i < l; i++) { alpha2[i] = 0; linear_term[i] = param.p - prob.y[i]; y[i] = 1; alpha2[i + l] = 0; linear_term[i + l] = param.p + prob.y[i]; y[i + l] = -1; } Solver s = new Solver(); s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, param.C, param.C, param.eps, si, param.shrinking); double sum_alpha = 0; for (i = 0; i < l; i++) { alpha[i] = alpha2[i] - alpha2[i + l]; sum_alpha += Math.Abs(alpha[i]); } svm.info("nu = " + sum_alpha / (param.C * l) + Environment.NewLine); }
public static string svm_check_parameter(svm_problem prob, svm_parameter param) { // svm_type int svm_type = param.svm_type; if (svm_type != svm_parameter.C_SVC && svm_type != svm_parameter.NU_SVC && svm_type != svm_parameter.ONE_CLASS && svm_type != svm_parameter.EPSILON_SVR && svm_type != svm_parameter.NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param.kernel_type; if (kernel_type != svm_parameter.LINEAR && kernel_type != svm_parameter.POLY && kernel_type != svm_parameter.RBF && kernel_type != svm_parameter.SIGMOID && kernel_type != svm_parameter.PRECOMPUTED) return "unknown kernel type"; if (param.gamma < 0) return "gamma < 0"; if (param.degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if (param.cache_size <= 0) return "cache_size <= 0"; if (param.eps <= 0) return "eps <= 0"; if (svm_type == svm_parameter.C_SVC || svm_type == svm_parameter.EPSILON_SVR || svm_type == svm_parameter.NU_SVR) if (param.C <= 0) return "C <= 0"; if (svm_type == svm_parameter.NU_SVC || svm_type == svm_parameter.ONE_CLASS || svm_type == svm_parameter.NU_SVR) if (param.nu <= 0 || param.nu > 1) return "nu <= 0 or nu > 1"; if (svm_type == svm_parameter.EPSILON_SVR) if (param.p < 0) return "p < 0"; if (param.shrinking != 0 && param.shrinking != 1) return "shrinking != 0 and shrinking != 1"; if (param.probability != 0 && param.probability != 1) return "probability != 0 and probability != 1"; if (param.probability == 1 && svm_type == svm_parameter.ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if (svm_type == svm_parameter.NU_SVC) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int i; for (i = 0; i < l; i++) { int this_label = (int)prob.y[i]; int j; for (j = 0; j < nr_class; j++) if (this_label == label[j]) { ++count[j]; break; } if (j == nr_class) { if (nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; Array.Copy(label, 0, new_data, 0, label.Length); label = new_data; new_data = new int[max_nr_class]; Array.Copy(count, 0, new_data, 0, count.Length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } for (i = 0; i < nr_class; i++) { int n1 = count[i]; for (int j = i + 1; j < nr_class; j++) { int n2 = count[j]; if (param.nu * (n1 + n2) / 2 > Math.Min(n1, n2)) return "specified nu is infeasible"; } } } return null; }
/// <summary> /// Determines the Range transform for the provided problem. Uses the default lower and upper bounds. /// </summary> /// <param name="prob">The Problem to analyze</param> /// <returns>The Range transform for the problem</returns> public static RangeTransform Compute(svm_problem prob) { return Compute(prob, DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND); }